
K I M A T H S U B R O U T I N E S
===================================

MOS Technology, 901 California Avenue

Palo Alto, CA 94304

- i -

1

TABLE OF CONTENTS

Introduction 1

Chapter 1 Overview 3

Chapter 2 A Sample Program Using KIMath 11

Chapter 3 Defining Storage for KIMath 13
Variables and Constants

Chapter 4 Introduction to the KIMath 15
Subroutines

Chapter 5 The KIMath Subroutines 18

KIM Software following page 37

LIST OF APPENDICES

APPENDIX A Evaluating Polynomials 27

APPENDIX B Applications 30

APPENDIX C The Approximations 34

APPENDIX D KIMath Addresses 36

- ii -

2

INTRODUCTION

This manual contains instructions on the use of the KIMath subroutine
package. KIMath provides the software for doing floating-point (decimal)
arithmetic on the KIM microcomputer system.

Because of the wide availability of calculators and larger computers
we take decimal arithmetic for granted. Perhaps you were surprised when
you first read the 6502 microcomputer programming manual and discovered
that the 6502 instruction set could do addition and subtraction of whole
numbers only in the range of +128 to -127! If you tried writing a program
to multiply two eight-bit binary words to produce a sixteen-bit result,
you will appreciate the ability in KIMath to multiply two sixteen-digit
BCD numbers just by calling a subroutine.

KIMath gives you the capability to add, subtract, multiply, divide
and calculate square roots. In addition, KIMath can calculate logs and
antilogs as well as tangents and arc tangents. Other common mathematical
functions can be calculated by combining these basic operations. KIMath
also has special subroutines to make it easy to evaluate polynomial
expressions, which can be used to approximate most mathematical functions.

Since your KIM system, like any microcomputer, has to break large
numbers into several successive words in memory and then work on them one
word at a time, floating-point arithmetic is much more time- and memory-
consuming than simple binary arithmetic. A single floating-point number
may use as many as 18 words of memory in your KIM system, and the
multiplication of two 16-digit numbers may take as long as 40 milliseconds
--40,000 machine cycles! The same multiplication using only 4 digits of
precision would take only 10 milliseconds, so if you will accept less
precision you can speed up your calculations.

To make this possible KIMath allows you to specify the number of
digits to be used in any calculation. You may use the same precision for
your entire program or you may adjust the precision depending on the needs
of each step in your calculations.

The KIMath subroutines are an ideal addition to the KIM resident
assembler. Naturally, the assembler is not required in order to use
KIMath.

- 1 -

3

Because each floating-point number is stored in several memory words,
KIMath provides utility routines to move blocks of words corresponding to
each number to and from the locations required to perform the calculations.

Finally, KIMath allows floating point values to be stored in several
different representations or formats to improve computational efficiency
while conserving memory. Routines are provided to convert between these
formats.

Chapter 1 of this manual gives you an overview of the concepts used
in KIMath. Chapter 2 shows how KIMath could be used to solve a simple
equation. Chapter 3 examines the different storage formats and Chapters 4
and 5 cover the use of the individual subroutines.

Several appendices are provided for the user who desires a more
rigorous explanation of the techniques used in designing KIMath. A storage
map and a complete program listing are also included.

The KIMath subroutines were carefully designed and thoroughly tested
to insure accuracy and correct operation. The final decision of their
suitability, however, rests with the user and no warranty of fitness is
implied by this document. If you suspect an error in these routines,
contact the Manager of Product Support at MOS Technology Sales, Inc. 901
California Avenue, Palo Alto, California 94304.

This manual assumes familiarity with 65OX assembly language. You
should first study the KIM Resident Assembler if necessary.

- 2 -

4

CHAPTER 1
Overview

1.0 Basic Concepts

KIMath is a package of subroutines designed for use with any MCS65OX

microprocessor-based system. The subroutines assist the user in doing the
floating-point arithmetic necessary for many business and scientific
applications. In particular, KIMath is designed to work with the KIM
resident assembler, although KIMath may be integrated into any MCS65OX
program.

1.1 Definitions

Before examining the operation of KIMath, here are definitions of

some terms used throughout this manual:
WORD or BYTE - the basic unit of data used in the KIM system. It is
composed of eight BITS or binary digits, each of which may only
have values of 0 or 1. The microprocessor can only operate on one
word at a time.

REGISTER - has a special meaning in this manual, where we define it
to mean a group of adjacent words in memory. Since the numbers
manipulated by KIMath are too big to store in a single word, we
call the group of words used to hold a single floating-point number
a register. This usage should not be confused with the registers
A, X, Y, stack pointer and status which are single words stored
within the microprocessor, not the memory.

POINTER - two adjacent words in memory containing the address of
another memory location. The programming convention in the 6502
is to store the two low-order hex characters of the address in the
first word and the two high-order characters in the second word.
For example, given:

Label Location Contents
----- -------- --------
POINTL 17FA 00
POINTH 17FB 1C

- 3 -

5

we could say that the register (POINTL, POINTH) is a pointer which
currently points to the address 1C00.

ROUTINE - a segment of machine-language code which performs a specified
operation. In this document it is synonymous with a subroutine.

ARGUMENT - the KIMath routines expect to find the numbers they are to
operate on in fixed locations in memory. When the KIMath routine ADD is
called by a program, it will take data from two fixed locations, add them
together and put the result in a third fixed location. The data in the
input locations are the arguments for the ADD routine. It is usually
necessary to transfer the data from other registers in memory into the
argument registers and transfer the calculated result to another memory
register for storage. KIMath provides routines for moving registers about
in memory.

WHOLE NUMBER or INTEGER - a number which does not contain a decimal point.

FLOATING-POINT NUMBER - a number containing a decimal point. Note: 12 is
an integer while 12.0 is a floating-point number.

1.2 Number Systems

All modern digital computers are based on the binary system, where
numbers are represented as groups of signals which are on or off, 1 or 0.
For instance, the decimal number 39 is represented in binary as 100111.
For convenience, binary numbers are often converted to groups of four and
represented in base 16 or hexadecimal. Decimal 39 is represented as:

2 7 hexadecimal

0010 0111 binary

Because our daily arithmetic is done in decimal, the hexadecimal
format is still difficult to interpret. The MCS6502 microprocessor also
has the capability to do arithmetic in a modified binary format known as
BCD or binary coded decimal. In this system each eight-bit word is divided
into two four-bit fields, each representing a decimal digit. Decimal 39
is now represented as:

3 9 decimal

0011 1001 BCD

memory words

- 4 -

6

Although less efficient in use of storage, this representation is more
readily understood. Appendix H of the 6502 Programming Manual contains a
review of binary and BCD arithmetic.

We can represent any whole number as a series of BCD digits, with two
digits packed in each memory word. The next problem arises when we wish to
store numbers such as 3.14159 or 1276.3333. These numbers contain decimal
fractions and BCD notation contains no provisions for decimal points. Very
large or very small numbers such as 987000000000 or 0.000000625 often have
large numbers of leading or trailing zeros which expand storage require-
ments. To overcome these problems, KIMath uses "scientific notation" which
stores decimal numbers in two parts. The number is first reduced to a
single whole number followed by a decimal fraction. This is called the
mantissa. The second part is the number of decimal places we must shift
the new decimal point to get back to the original number. This is called
the exponent (scientific notation is also referred to as exponential
notation). If the decimal point must be shifted to the right the exponent
is a positive number; if a left shift is necessary the exponent is
negative. For instance:

987000000000 becomes 9.87 E+11

0.000000625 becomes 6.25 E-7

(An E for exponent is commonly used to separate the two values.) Similarly:

-6.273411 E+3 is -6273.411

which is an example of a number with a negative mantissa and a positive
exponent.

1.3 How Will I Use KIMath in My Program?

Your program will use data of two types: variables whose values will

change from one program run to the next or within a single run, and
constants which will always have the same value. For example, a simple
program to compute the area of a circle given its radius will solve the
equation:

AREA = 3.14 R2

The values for AREA and R will change each time you run the program; they
are variables. The values 3.14 (pi) and 2 (the power to which R is raised)
are constants.

- 5 -

7

When you write your program in assembly language you define memory
locations to store this data. When you reserve storage for data used with
KIMath, you will have to reserve several words of storage for each variable
and constant and you will have to define a register for each data value.
The size of each register will depend on the number of digits you wish to
store--that is, how much precision you wish to maintain in your
calculations.

When you wish to perform calculations using KIMath, you will have to
transfer the value of the variables or constants from their memory storage
registers into the argument registers (RX and RY) of KIMath, call the
appropriate KIMath routine to do the calculation, and then transfer the
answer or result from the KIMath result register (RZ) back to a variable
storage register. KIMath provides routines for doing these register moves.

In addition, KIMath provides for a variety of data formats to minimize
storage requirements and speed computation. KIMath provides routines for
converting data between these different formats.

1.4 Summary of KIMath Calculation Subroutines

Subroutine Action Description
---------- ------ -----------
ADD RX + RY -> RZ This routine allows the user to add two

floating-point numbers. The user may
select the number of digits in the
mantissas of the arguments.

SUB RX - RY -> RZ This routine allows the user to subtract
two floating-point numbers. The user may
select the number of digits in the
mantissas of the arguments.

MLTPLY RX * RY -> RZ This routine allows the user to multiply
two floating-point numbers. The user may
select the number of digits in the
mantissas of the arguments.

DIVIDE RX / RY -> RZ This routine allows the user to divide two
floating-point numbers. The user may
select the number of digits in the
mantissas of the arguments.

- 6 -

8

1.4 Summary of KIMath Calculation Subroutines (Continued)

Subroutine Action Argument Range Description
---------- ------ -------------- -----------

SQRT
√
(RX) -> RZ {l, 100} This routine allows the user

to form the square root of a
floating-point number. The user
may select the number of digits
in the mantissa of the argument.

LOG LOG10(RX) -> RZ {1/
√

10,
√

10} This routine allows the user to
form the common logarithm of a
floating-point number. The user
may select the number of digits
in the mantissa of the argument,
but at most 14 will be used and
at most 8 will be returned.

TENX 10^(RX) -> RZ {0, 1} This routine allows the user to
form the common antilog of a
floating-point number. The user
may select the number of digits
in the mantissa of the argument,
but at most 12 will be used and
at most 8 will be returned.

TANX TAN(RX) -> RZ {0, 1} This routine allows the user to
form the tangent of a floating-
point number. The user may sel-
ect the number of digits in the
mantissa of the argument, but at
most 14 will be used and at most
8 will be returned. The argument
and result are in radians.

ATANX ARCTAN(RX) -> RZ {0, 1} This routine allows the user to
form the arc tangent of a float-
ing-point number. The user may
select the number of digits in
the mantissa, but at most 14
will be used and at most 8 will
be returned. The argument and
result are in radians.

1.5 KIMath Formats

Several variations on exponential notation are used in KIMath.
1.5.1 Computational Format

Before actual computation can take place, every number trans-

ferred to a KIMath argument register must be converted to an eighteen-
word format:

a. The first word contains the sign of the mantissa in bit 7
(1 if minus, 0 if plus) and the sign of the exponent in
bit 6.

- 7 -

9

b. The next sixteen words contain the sixteen digits of the
mantissa, one digit per word, using BCD notation.

c. The last word contains the value of the exponent (which
must be between 0 and 99) as two BCD numbers. For
example: a value of -7292.3847684 would be stored in
computational format as:

Sign Word Mantissa Digits (in BCD) Exponent Word

? ?1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
80 07 02 09 02 03 08 04 07 06 08 04 00 00 00 00 00 03

66

_/____________
1 0 0 0 0 0 0 0 (Binary Sign Word)

positive exponent
negative mantissa

This format allows KIMath to calculate quickly since every floating-
point number is contained in the same number of words and each word
contains only a single digit (except for the exponent word).

This is a very inefficient use of storage since the left half of each
word in the mantissa always contains a zero, and each mantissa contains
sixteen digits even if many are just trailing zeros.

1.5.2 Packed Format

To avoid this waste of storage KIMath provides a more efficient

format for storing data when it is not being used in a computation:
a. The first word contains the signs of the mantissa and

exponent as in computational format.
b. Succeeding words each contain two digits of the mantissa in

BCD. The number of words used is defined by the user.
c. The final word contains the two digits of the exponent, as

in computational format.
If the user had decided to use 12 digits of precision in

storage, the value of -7292.3847684 would be stored as:

80 72 92 38 47 68 40 03

6 6Mantissa
Sign Word Exponent

thus using eight words of storage instead of eighteen. KIMath contains
routines to convert between computational and Packed format. Packed
format is the form

- 8 -

10

usually used for memory registers storing program variables. It is your
responsibility to keep track of how many digits of precision are used for
each variable, since KIMath will need that information when moving the
memory register to the KIMath argument registers and converting to
computational format. You may choose to use the same precision for all
storage registers to simplify this task.

1.5.3 Unpacked (ASCII) Format

The ASCII code used by the KIM-1 serial communications

interface represents each character typed in or out as two hexadecimal
characters packed in a single word: the character ’A’ is 41, a blank is 20,
a carriage return is 0D. The digits 0 through 9 are coded as themselves
plus 30: ’4’ is 34, ’7’ is 37, etc.

To make interfacing easier, KIMath has an unpacked format which
uses ASCII codes rather than BCD.

a. The first word contains the sign bits for the mantissa and
exponent as used for computational format.

b. Up to 16 words (depending on the precision desired) are
used for the mantissa. Each word contains one digit of the
mantissa in ASCII code.

c. The last two words contain the two digits of the exponent,
also in ASCII.

Using six digits of precision the value

-0.003764 (or -3.764 E-3)

would be stored as:

Sign Word Exponent

C0 33 37 36 34 30 30 20 30 33

Mantissa

This format is usually used only when preparing to
transfer data to or from a line of terminal input
or output.

1.5.4 Constant Format

KIMath calculates functions by solving polynomial equations

which closely approximate the desired function. Because the polynomials
have many terms and the coefficients have differing precision requirements,
a special format is used in KIMath to store constants. The format allows
all constants to

- 9 -

11

be stored together in a list without having to specify elsewhere the
precision of each constant. The constant format is composed of:

a. A sign byte, as in the other formats.
b. Up to eight bytes in packed BCD format (two BCD characters

per byte) containing the mantissa.
c. An exponent byte of two characters. The first (leftmost)

character is always a hexadecimal ’F’ and the second
character is the one-digit BCD exponent. Thus, constants
may only have exponents between -9 and +9.

Thus the constant 32767.413 (3.2761413 E+4) will be stored as:

Sign Byte Always an ’F’

00 32 76 74 13 F4
? ?

Mantissa Exponent Byte

Thus, KIMath can read a constant from memory by just knowing
its starting location. It will continue to scan successive bytes until it
locates one containing an ’F’ and know it has reached the end of the
constant. The next byte will contain the sign byte of the next constant.

The KIMath routine USRLKP is used to transfer a constant format
value from memory to the argument register RY and convert it to
computational format.

1.6 Summary of Formats

KIMath supports four different formats:

a. Computational Format - used for the argument and result
registers RX, RY and RZ. Although inefficient in use of
storage, they permit quick calculation.

b. Packed BCD Format - most efficient in use of storage.

c. Unpacked (ASCII) Format - less efficient in use of storage,
but easier to convert to and from external devices.

d. Constant Format - efficient in use of storage and a good
way to store tables, but limited in the size of the
exponents which can be used.

- 10 -

12

CHAPTER 2

A Sample Program Using KIMath

2.0 Throughout the remainder of this manual we will develop the techniques
required to create the following program:

An engineer wishes to create a program to find the resonant frequency
of a tuned circuit, given values for L, the inductance, and C, the
capacitance, in the circuit. The formula is:

f =
1

2π
√
LC

The program will have to contain the following operations:
1. The starting address of the program must be defined and storage

registers for L, C, and the constants 2π and 1 must be created.
2. The precision of the calculations must be defined to KIMath.
3. The value of L must be read in and transferred to a KIMath

argument register.
4. The value of C must be read in and transferred to a KIMath

argument register.
5. L must be multiplied by C.
6. Move the answer to step 5 to a KIMath argument register. Compute

the square root. Since the square root routine in KIMath will
only accept numbers between 1 and 100 we must adjust the
exponent of the result of step 5.

7. Get the first constant (2pi) and transfer it to an argument
register.

8. Move the computed square root to another argument register and
multiply.

9. Get the second constant (1) and put in an argument register.
10. Move the result of step 8 to an argument register and do the

division.
11. Move the result of the calculation back to the register

originally containing L and type it out.

To summarize as an assembly language program,

;(l) define storage
;(2) define precision

- 11 -

13

;(3) read L and transfer to RX
;(4) read C and transfer to RY
;(5) compute L times C--answer stored in RZ
;(6) move RZ to RX and
; compute square root--adjust exponent of result
;(7) get 2pi to RX
;(8) move RZ to RY and multiply
;(9) get 1 (constant) and put in RX
;(10) move RZ to RY and divide
;(ll) move RZ back to L and print out

.END

To start with, our program only contains comments. As we learn more about
KIMath we will begin to write the assembly language statements to implement
the program.

To help you visualize what is happening in the program, the
following table shows the contents of the two argument registers (RX, RY)
and the result register (RZ) after each program step:

At the end of
step # RX RY RZ
------ -- -- --

1 -- -- --
2 -- -- --
3 L -- --
4 L C --
5 L C LC (L times C)
6 LC C

√
LC (adjusted)

7 2π 2π*
√
LC

8 2π
√
LC 2π

√
LC

9 1 1* 2π
√
LC

10 1 2π
√
LC 1/2π

√
LC

*The constant appears in both RX and RY because it is moved
from storage to RY and then to RX.

- 12 -

14

CHAPTER 3

Defining Storage for KIMath

Variables and Constants

3.0 In the last chapter you learned that KIMath uses several different
formats for memory storage registers used in KImath calculation. Now let
us see how we set aside memory to hold these variables and constants.

3.1 Defining Precision

If we define an even number NDIG which is the Number of DIGits of

precision we wish to use, storing a number of that precision will take:

a. NDIG + 3 words of storage in Unpacked format.
b. NDIG/2 + 2 words of storage in Packed format.
c. NDIG/2 + 2 words of storage in Constant format. (Constants may be

stored in fewer digits if they have leading or trailing zeros.)
d. Computational format always takes 18 words.

In our sample program (see Chapter 2) we defined two variables, L and
C. Since we are reading them in from a terminal we will store them in
Unpacked (ASCII) format. We also needed two constants (2pi and 1) and
will store them in constant format.

Since we may wish to change the precision of our program, we will
define the variable NDIG to the assembler and use it to calculate our
storage. The following code will define storage for our sample program:

;(l) define storage
NDIG = 8; we will carry 8 digits of precision
* = $5000; start the program at location 5000 (hex)
L * = * + NDIG + 3; reserve storage for L
C * = * + NDIG + 3; reserve storage for C
TWOPI .BYTE $00, $62, $83, $18, $54, $F0; define 2pi
ONE .BYTE $00, $10, $F0; define 1.0

- 13 -

15

Note that constant format allows us to eliminate the trailing zeros in
the constant ONE. The symbol "*" stands for the current value of the
program counter. Refer to the assembler documentation if you are not
familiar with assembler directives.

Our program storage map will now be:

5000 - 500A storage for L
500B - 5015 storage for C
5016 - 501B storage for 2π constant
501C - 501E storage for 1.0 constant
501F - program storage

If we later re-assemble our program and change the value of NDIG to 4
or 10, to increase or decrease the precision of our calculations, the
amount of storage allocated will automatically decrease or increase.

- 14 -

16

CHAPTER 4

Introduction to the KIMath Subroutines

4.0 Now that we have examined the data formats and storage requirements of
KIMath we are ready to examine the subroutines themselves. The following
table summarizes the KIMath subroutines, their arguments and their
functions:

Summary of KIMath Subroutines

Subroutine Arguments Function
---------- --------- --------
SAVXY None Save processor X and Y index
RCLXY None registers. Recall previously saved

X and Y registers.

IPREC PREC, EXTRA PREC + EXTRA - N
PLOADX ARGXL, ARGXH Move user register in packed format
PLOADY ARGYL, ARGYH to RX or RY and change to

PREC computational format.

ULOADX ARGXL, ARGXH Move user register in unpacked
ULOADY ARGYL, ARGYH format to RX or RY and change to

PREC computational format.

PSTRES RESL, RESH Move contents of RE to user
USTRES PREC register in packed or unpacked

format.

USRLKP KONL, KONH, Transfer constant data to RY and
NKON convert to computational format.

POLY KONL, KONH, Evaluates a polynomial.
NKON, DEG

CLRX None Clear RX, RY, or RZ
CLRY
CLRZ

DECHEX CNT Converts contents of CNT from
decimal to hexadecimal notation.

XSY RX, RY Exchange contents of RX and RY.

4.1 Working Storage

The working storage area used by the KIMath subroutines is divided

into three parts: the computational registers (RA, RB, RQ, RM and RN)
which are not available to the user; the argument/result registers
(RX, RY, RZ); and the pointers, counters and indicators in page zero.

- 15 -

17

4.1.1 The Argument/Result Registers - RX, RY, RZ

The registers RX and RY are the argument registers and RZ is

the result register. This means that when RX and RY are set to specific
values and, for example, the MLTPLY routine is called, then the product is
returned in RZ. These registers are each 18 bytes long to permit a maximum
of 16 digits for the mantissa. The registers RX, RY and RZ are CLeaRed
directly by means of the subroutines CLRX, CLRY and CLRZ, respectively.
The registers RX, RY, RZ contain a sign byte (SX, SY, SZ) and an exponent
byte (EX, EY, EZ). The sign byte is the first and the exponent byte the
last. Remember that data in RX, RY or RZ must be in computational format.

These registers may be transferred about by means of the
subroutines whose names are of the form MVsd, where "s" stands for source
and "d" for destination. For example, MVXY MoVes the contents of RX to RY.

4.1.2 The Pointers, Counters and Indicators

Before calling any KIMath routine, you may wish to SAVE the

processor’s X and Y registers in locations TMPX and TMPY by means of the
routine SAVXY. The X and Y registers are ReCaLled by calling RCLXY.

Before calling an arithmetic or transcendental KIMath routine
you must specify the number of digits of PRECision desired by loading
locations PREC and EXTRA with two unsigned, binary values. The first value,
PREC, specifies the number of digits of mantissa which the user expects in
the RZ register after completion of a calculation and PREC+EXTRA specifies
the number of digits of precision used by the subroutine in computing the
result. The limitations on these values are: 0 < PREC+EXTRA <= 16 and:

Function Internal Precision* Precision* Returned
-------- ------------------ -------------------
ADD PREC+EXTRA PREC
SUB PREC+EXTRA PREC
MLTPLY PREC+EXTRA PREC
DIVIDE PREC+EXTRA PREC
LOG 14 Lesser of PREC or 8
TENX 12 Lesser of PREC or 8
TANX 14 Lesser of PREC or 8
ATANX 14 Lesser of PREC or 8
SQRT PREC+EXTRA PREC

*Note: Here the word "precision" refers not to error but
to the number of digits used in calculation.

- 16 -

18

The sum PREC+EXTRA may be computed by calling the routine named IPREC.
This routine computes the sum and stores the result in N. N is the byte
which the arithmetic and transcendental routines use to decide the
precision of internal calculation. If the user so desires, the use of PREC
and EXTRA may be avoided and N used directly. However, the routines LOG,
TENX, TANX and ATANX may change any value placed in N.

The bytes in page 0 named ARGXL, ARGXH, ARGYL, and ARGYH are used to
contain the addresses of user-defined registers in the RAM memory area. By
using these address pointers and the subroutines PLOADX, PLOADY, ULOADX and
ULOADY, the user loads the KIMath argument registers from any place in
memory.

The bytes RESL and RESH are used in conjunction with the KIMath
routines PSTRES (Packed SToring of RESults) and USTRES (Unpacked Storing of
RESults) to place the contents of RZ in a user-defined register, which is
specified by the pointer (RESL, RESH).

The bytes KONL, KONH are used together with DEG and KIMath routines
USRLKP and POLY to evaluate any polynomial, subject, of course, to the
constraints that the coefficients have fewer than 16 digits of mantissa and
that the exponent has only one digit. More shall be said about these
techniques in the section on Advanced Applications.

- 17 -

19

CHAPTER 5
The KIMath Subroutines

5.1 The KIMath subroutines may be divided into four groups, Functions,
Conversions, User Utilities and System Utilities. This section will deal
with the first three classes.

5.1.1 The Function Subroutines are called ADD, SUB, MLTPLY, DIVIDE,
SQRT, LOG, TENX, TANX, and ATANX. These routines may be divided into the
Arithmetic Routines and the Transcendental Routines. Each of the routines
requires that the argument registers (RX and RY) be in the Computational
Format.

The following tables give some relevant information about the
Arithmetic and Transcendental Routines:

Arithmetic Routines

Subroutine Precision (1) Error (2) Symbolic Action

ADD 0 < N <= 16 1 Count RZ <- RX + RY (3)

SUB 0 < N <= 16 1 Count RZ <- RX - RY (3)

MLTPLY 0 < N <= 16 1 Count RZ <- RX * RY

DIVIDE 0 < N <= 16 1 Count RZ <- RX / RY

SQRT 0 < N <= 16 5 Counts RZ <-
√
RX

(1) Note -Precision refers to the number of digits to which the
calculation is to be carried out.

(2) Note -Error refers to the error in the least significant
digit of the mantissa and so is the relative error.

(3) Note -In the case of ADD, at return time RX contains the
argument with the largest absolute value. Thus one
may use this routine to sort a table of numbers.
In the case of SUB the sign of the mantissa of RY is
changed and then the arguments are added. Thus the
arguments are intact except for a sign.

- 18 -

20

Transcendental Routines

Subroutines Interval Precision Error Symbolic Action
----------- -------- --------- ----- ---------------

LOG {1/
√
10,

√
10} 14 <10.E-8* RZ <- LOG10(RX)

TENX {0, 1} 12 10.E-8 RZ <- 10^(RX)

TANX {0, 1} 14 10.E-8 RZ <- TAN(RX)

ATANX {0, 1} 14 10.E-8 RZ <- ARCTAN(RX)

*Note: The error in the case of LOG is the absolute error; the others
are relative error.

The user may use the bytes PREC and EXTRA together with the subroutine
IPREC to calculate N, which is the value used by these routines. Note that
the Transcendental Routines supply their own value for N and will overwrite
any value supplied by the user.

Now that we know the names of the calculation routines and how to
indicate to KIMath the desired precision of calculation we can add some
statements to our sample program. Now it will look like (the > sign
indicates new statements we have added):

; (1) define storage
NDIG = 8

* = $5000
L * = *+NDIG+3
C * = *+NDIG+3

TWOPI .BYTE $00, $62, $83, $18, $54, $F0
ONE .BYTE $00, $10, $F0

; (2) define precision
> EX = 2; use 2 extra digits in calculations
> LDA #NDIG
> STA PREC
> LDA #EX
> STA EXTRA
> JSR IPREC ; calculate N

; (3) read L and transfer to RX

- 19 -

21

; (4) read C and transfer to RY
; (5) compute L times C - answer stored in RE

> JSR MLTPLY ; do the multiplication
; (6) move RZ to RX and compute square root - adj. exp.

> JSR SQRT
; (7) get 2pi to RX
; (8) move RZ to RY and multiply

> JSR MLTPLY
; (9) get 1 (constant) and put in RX
; (10) move RZ to RY and divide

> JSR DIVIDE
; (11) move RZ to L and print out

.END

Now by simply changing the assigned value for NDIG and EX and re-
assembling the program, both calculated precision and storage allocation
can be automatically changed. This allows re-assembly of the program with
changed precision (and thus changed locations for registers L and C). The
pointers will automatically be changed to the correct locations.

5.1.2 The Conversion Routines permit the user to transform data from
the packed BCD, constant, or unpacked formats to the computational format
and back again. They are PLOADX, PLOADY, ULOADX, ULOADY, PSTRES, and
USTRES. These routines all use PREC to determine the number of bytes to be
converted.

a) PLOADX, PLOADY: These routines load RX and RY with the
packed format data found at the addresses {ARGYL, ARGXH} and
{ARGYL, ARGYH}. The data is unpacked into the computational
format and the value in PREC determines how many digits will
be transferred. Note that PREC should be an even number to
prevent the loss of a digit in transfer. This is natural
when it is noted that the packed format requires an even
number of digits in the mantissa bytes.

b) ULOADX, UMADY: These routines load RX and RY with the
unpacked format data found at the addresses {ARGXL, ARGYL}
and {ARGYL, ARGYH} respectively. The data is converted into
computational format and the number of digits transferred is
determined by PREC. In this case PREC need not be even to
effect an accurate transfer.

- 20 -

22

The use of ULOAD and PLOAD allows us to move data to the computational
registers from memory registers. We can now add them to our program at the
following locations:

; (3) Read L and transfer to RX
> JSR GETNL ; a user-provided subroutine to get a
> ; number from the terminal and place
> ; it in L in unpacked format.
> LDA #<L ; low-order byte of address of L
> STA ARGXL
> LDA #>L ; high-order byte
> STA ARGXH
> JSR ULOADX ; move L to RX

; (4) read C and transfer to RY
> LDA #<C ; low-order byte of address of C
> STA ARGYL
> LDA #>C ; high-order byte of address of L
> STA ARGYH
> JSR GETNC ; user-supplied routine to read value of C into

; register C

> JSR ULOADY

Note: The assembler interprets the symbols "#<L" to mean the
low-order byte of the address of the variable named L.
"#>L" implies the high-order byte of the address of L.

c) PSTRES: This routine moves the contents of RZ into the
location specified by {RESL, RESH} as a starting address and
converts it to packed format. The byte PREC is used to
determine the number of bytes to be converted.

d) USTRES: This routine converts the contents of RZ from
computational format as it moves them to the destination
specified by (RESL, RESH} and converts the contents to
unpacked format. PREC, again, determines the number of
bytes to be moved.

These routines allow transfer of the final answer to our example
problem back to register L for printout:

- 21 -

23

; (11) move RS3 to L and printout
> LDA #<L ; set up
> STA RESL ; pointer
> LDA #>L ; to locate
> STA RESH ; destination register
> JSR USTRES ; move it
> JSR PRINTL ; user-supplied routine to print the value in L

e) USRLKP: This routine loads RY with the constant format data
beginning at the address {KONL, KONH}. The data is
converted from constant format to computational format.
The number of digits transferred is determined by the
location of the byte containing an ’F.’ This routine also
uses the byte named NKON to point at the constant. Thus if
the user sets NKON equal to zero and the pair {KONL, KONH}
equal to some address prior to calling USRLKP then at
return time RY contains the constant. {KONL, KONH, and
NKON} point at the next constant, that is, {KONL, KONH} +
NKON is the address of the byte following the byte
containing an F (presumably the first byte of the next
constant). Using this routine and POLY one may step
through a table of coefficients and evaluate a polynomial.
Use of POLY is covered in Appendix A. Clearly, one may also
use this routine for other purposes such as a simple table
lookup of constants needed frequently in a calculation. Now
we have the capability to load our constants into the
program. Now we can fill out steps (7) and (9):

; (7) get 2pi to RX
> LDA #<TWOPI ; get low-order
> STA KONL ; pointer byte
> LDA #>TWOPI ; get high-order
> STA KONH ; pointer byte
> LDA #00
> STA NKON ; initialize offset
> JSR USRLKP ; lookup constant and put in RY

; still have to get RY to RX

- 22 -

24

; (9) get 1 (constant) and put in RX
> JSR USRLKP ; a lot easier the second time
> ; still must transfer RX from RY

Up to 256 bytes of constants may be indexed through by
successive calls to USRLKP.

f) DECHEX: This routine converts the contents of the byte CNT
from BCD to HEX. The converted value may be found at return
time in CNT.

5.1.3 The User Utilities permit the user to move and clear various
registers.
a) The routines whose names are of the form MV s, d, where "s"

stands for source and "d" destination, allow the user to
move the registers RX, RY, RZ, RM and RN about with ease.
The following table shows the supported moves. RM and RN
are working table registers and will not normally be
available to the user.

Source Destinations Corresponding Routine Names

RX RY, RZ, RM, RN MVXY, MVXZ, MVXM, MVXN
RY RX, RZ, RM, RN MVYX, MVYZ, MVYM, MVYN
RZ RX, RY, RM, RN MVZX, MVZY, MVZM, MVZN
RM RX, RY, RZ, RN MVMX, MVMY, MVMZ, MVMN
RN RX, RY, RZ, RM MVNX, MVNY, MVNZ, MVNM

b) The routines CLRX, CLRY and CLRZ may be used to set RX, RY
and RZ equal to zero, respectively.

c) The routine XSY exchanges RX and RY.
The move subroutines allow us to transfer computational

data between working registers. We need them in steps (6),
(7), (8), (9), and (10):

; (6) Move RZ to RX and compute square root
; - adj. exp.

> JSR MVZX ; move RZ to RX
JSR SQRT

; (7) get 2pi to RX
LDA #<TWOPI

- 23 -

25

STA KONL
LDA #>TWOPI
STA KONH
LDA #00
STA NKON
JSR USRLKP ; constant to RY

> JSR MVYX ; move it to RX
; (8) move RZ to RY and multiply

> JSR MVZY
JSR MLTPLY

; (9) get 1 (constant) and put in RX
JSR USRLKP ; get next constant

> JSR MVYX ; move it to RX
; (10) move RS to RY and divide

> JSR MVZY ; move RZ to RY
JSR DIVIDE

The sample program is now complete except for the fact that SQRT will
only operate on numbers between 1 and 100, so we must-adjust the exponent
of the argument, take the square root and adjust the results. The two
subroutines required are listed in Appendix B and are called SQRIN &
SQROUT. They must be added to the program (they are not included in
KIMath). Step (6) now becomes:

; (6) Move RS to RX and compute square root
JSR MVZX ; move RZ to RX

> JSR SQRIN ; adjust exponent
JSR SQRT ; compute root

> JSR SQROUT ; adjust exponent back

5.2 Completed KIMath Program
; (1) define storage

NDIG = 8
* = $5000

L * = *+NDIG+3
C * = *+NDIG+3
TWOPI .BYTE $00, $62, $83, $18, $54, $F0; TWOPI
ONE .BYTE $00, $10, $F0

; (2) define precision

- 24 -

26

EX = 2 ; use 2 extra digits in calculation
LDA #NDIG
STA PREC
LDA #EX
STA EXTRA
JSR PREC ; calculate N

; (3) Read L and transfer to RX
JSR GETNL ; user-provided subroutine to input value for L

; to L register in unpacked format.
LDA #>L ; low-order byte of address of L
STA ARGXL
LDA #<L ; high-order byte
STA ARGXH
JSR ULOADX ; Move L to RX

; (4) Read C and transfer to RY
LDA #<C ; low-order byte of address of C
STA ARGYL
LDA #>C ; high-order byte of address of C
STA ARGYH
JSR GETNC ; user-provided subroutine to input value

; for C to C register in unpacked format.
JSR ULOADY ; transfer C to RY

; (5) Compute L times C
JSR MLTPLY

; (6) Move RZ to RX and compute square root
JSR MVZX ; move RZ to RX
JSR SQRIN ; adjust exponent
JSR SQRT ; compute root
JSR SQROUT ; adjust exponent back

; (7) get 2pi to RX
LDA #<TWOPI ; address low of First constant
STA KONL
LDA #>TWOPI
STA KONH
LDA #00

- 25 -

27

STA NKON
JSR USRLKP ; constant to RY
JSR MVYX ; move it to RX

; (8) Move RZ to RY and multiply
JSR MVZY
JSR MLTPLY

; (9) get 1 (constant) and put in RX
JSR USRLKP ; get next constant
JSR MVYX ; move it to RX

; (10) Move RZ to RY and divide
JSR MVZY ; move RZ to RY
JSR DIVIDE ;

; (11) Move RZ to L and print it out
LDA #<L ; set up
STA RES ; pointer
LDA #>L ; to locate
STA RES+1 ; destination register
JSR USTRES ; move it
JSR PRINTL ; user-supplied routine to print out L.
.END

Note: The above program would also require that the starting address of
all KIMath subroutines be defined. See Appendix D for the
correct addresses.

- 26 -

28

Appendix A

EVALUATING POLYNOMIALS

KIMath uses polynomial approximations to generate several of its
functions, and these subroutines are also available for calculation of
user-defined polynomials.

The user must first define the constants to be used in the calculation,
then define the degree of the polynomial and the starting address of the
stored constant. Finally, the argument for the polynomial is transferred
to RX and the routine POLY is called. The value of the polynomial is
returned in RE.

Specifically, given a polynomial of the form:

y = c0 + c1*x + c2*x^2 + c3*x^3 + ... + cn*x^n

the coefficients (c0, c1, c2, c3, ..., cn) are stored in constant format in
contiguous memory. The highest order coefficient is stored in the lowest
memory address. NKON is set to zero, DEG is set to a value of N - 1 where
N is the degree of the polynomial. The address pair (KONL, KONH) must
point to the first byte of the constant storage area. RX is loaded with
the value of x and the subroutine POLY is called. Upon return, y (the
value of the polynomial) is in RZ.

A Sample Program

The sine function can be expressed as:

∞∑
n=1

(−1)n+1 Z2n−1

(2n− 1)!

Expanded, this yields the polynomial:

Z^3 Z^5 Z^7 Z^9 Z^11
sin Z = Z - --- + --- - --- + --- - ---- ...

3! 5! 7! 9! 11!

For our example we will use the first six non-zero terms for our
application.

Our coefficients are:

c0 = 0.0
c1 = 1.0
c2 = 0.0

- 27 -

29

1
c3 = - --- = -1.6666667 E-1

3!
c4 = 0

1
c5 = + --- = +8.3333333 E-3

5!
c6 = 0

1
c7 = - --- = -1.9841270 E-4

7!
c8 = 0

1
c9 = + --- = +2.7557319 E-3

9!
c10 = 0

1
c11 = + --- = -2.5052108 E-3

11!

A program to evaluate the sine function would look like:

; define parameter and pointers
PREC * = $10

.BYTE 04 value for PREC
EXTRA * = $11

.BYTE 04 value for EXTRA
KON * = $OE

.WORD $3000
DEG * = $05

.BYTE 10
NCON * = $01

.BYTE $00
* = $3000 ; starting address

NIN = * + 7 ; reserve 7 bytes for input register

; define constants c0 - c11 - note that they are stored in
; reverse order

.BYTE $CO,$25,$05,$21,$08,$F8 ; c11

.BYTE 0,0,$F0 ; c10

.BYTE $40,$27,$55,$73,$19,$F6 ; c9

.BYTE 0,0,$F0 ; c8

.BYTE $CO,$19,$84,$12,$70,$F4 ; c7

.BYTE 0,0,$F0 ; c6

.BYTE 04,$83,$33,$33,$33,$F3 ; c5

.BYTE 0,0,$F0 ; c4

- 28 -

30

.BYTE $C0,$16,$66,$66,$67,$F1 ; c3

.BYTE 0,0,$F0 ; c2

.BYTE 0,01,$F0 ; c1
CONST .BYTE 0,0,$F0 ; c0

; call user-written subroutine to load some
; value into NIN register.

JSR GETVAL
LDA KON ; set up
STA ARGXL ; pointer to
LDA KON+1 ; input
STA ARGXH ; buffer

JSR ULOADX ; move NIN to RX and convert
JSR POLY ; evaluate polynomial
LDA KON ; set up
STA RES ; pointer to
LDA KON+1 ; output
STA RES+1 ; results
JSR USTRES ; move RZ to NIN and convert

; call user-written subroutine to printout
; value in NIN

JSR PUTVAL
.END ; all done

- 29 -

31

Appendix B

APPLICATIONS

In this section we shall deal with extension of the range of the
functions, and extension of the function set.

a) Common Logarithm: Let x * 10^r denote an arbitrary positive floating-
point number. Then

x * 10^r = x * 10^(-1/2) * 10^(1/2) * 10^r

= (x * 10^(-1/2)) * 10^(r+1/2)

Now 1 <= x < 10 and so 10^(-1/2) <= x * 10^(-1/2) < 10^(1/2).
But 0.1 = 10^(-1/2) and so LOG may be used to evaluate
log10(x * 10^(-1/2)). By using the following equation, one may
compute the common log for any positive argument.

log10(x * 10^r) = log10(x * 10^(-1/2) * 10^(r+1/2))

= log10(x * 10^(-1/2)) + r + 1/2

b) Common Antilog: Let x be an arbitrary floating-point number satisfying
the inequality

|x| < 100,

and let I = [x] and F = <x>, where [x] stands for the largest integer
less than or equal to x and <x> = x - [x]. With these definitions in
mind we find that

x = I + F

Now 0 <= F < 1 and I is an integer and so

10^x = 10^F * 10^I

Since 0 <= F < 1 we may use TENX to find 10^F, after which we have a
number between 1 and 10. Therefore I is the floating point exponent
of 10^x.

- 30 -

32

c) Tangent: Let x be a floating-point number which satisfies the
inequality 0 <= x <π/2. This implies that 0 <= x * 2/π < 1. Now
tan(x * π/4 * 2/π) = tan(x/2) but

2 tan(x/2)
tan(x) = --------------

1 - tan^2(x/2)

Thus by applying TANX to the value of (2/π)x and applying the above
trigonometric identity one may extend the tangent function to the
interval [0,π/2). Note also that

1 - tan^2(x/2)
cos(x) = -------------- and

1 + tan^2(x/2)

2 tan(x/2)
sin(x) = --------------

1 + tan^2(x/2)

and so one may use TANX to evaluate the other trig functions.

d) Arc tangent: This function may be extended from the interval
[0, 1] by means of the following identities:

arctan(-x) = -arctan(x)

arctan(|x|) = π/2 - arctan(1/|x|), x <> 0

With these identities and the ATANX subroutine one can evaluate
the arctangent function for any argument. The other inverse
trigonometric functions may then be computed by means of the
following identities:

x
arcsin(x) = arctan(-------------)

(1-x^2)^(1/2)

(1-x^2)^(1/2)
arccos(x) = arctan(-------------)

x

- 31 -

33

e) Square Root: Since every floating-point number can be expressed as
x * 10^r where 1 <= |x| < 100 and |r| is even or zero, one can form
the square root as follows:

√
x ∗ 10r = 10r/2 ∗

√
x

where x >= 0 and
√
x is evaluated by using SQRT. Note that r/2 is an

integer and 1 <=
√
x < 10 and so r/2 is the floating-point exponent of

sqrt(x * 10^r).

Chapter 5 mentions that the sample program must be provided with two
subroutines to extend the range of the square root function. These sub-
routines are provided below. The subroutine SQRIN must be called
immediately prior to calling SQRT and SQROUT must be called immediately
afterwards. SQRIN and SQROUT are not part of KIMath and must be supplied
by the user:

Exponent Adjustment for SQRT

VAL * = *+1
SQRIN SED
SQ1 SEC

LDA EX
SBC #2
STA EX
BCC OUT
CLC
LDA VAL
ADC #1
STA VAL
BNE SQ1

OUT ADC #2
BIT sx
BVC SQ2
STA EX
CLC
ADC VAL
STA VAL
RTS

- 32 -

34

SQ2 STA EX
RTS

SQROUT LDA VAL
STA EZ
RTS

- 33 -

35

Appendix C

THE APPROXIMATIONS

This section is included for those users who are interested in how
KIMath generates its functions. Understanding of this section is not
required for use of KIMath.

1) LOG: This subroutine has been built around the rational function
given by the following equation:

R(X) = t(x) * p(t(X)),

where t(x) =
x− 1
x+ 1

, x ∈ [
√

0.1,
√

10] and p(x) is a polynomial given by

p(x) = a0 + al*x + a2*x^2 + a3*x^3 + a4*x^4 + a5*x^5

where

a0 = 8.685887483405 x 10^(-1)
a1 = 2.89551130267 x 10^(-1)
a2 = 1.731095517 x 10^(-1)
a3 = 1.3136901121 x 10^(-1)
a4 = 5.53427387 x 10^(-2)
a5 = 1.820912997 x 10^(-1)

The absolute error on the interval [
√

0.1,
√

10] for log10(x) as

approximated by R(x) is less than 1 x 10^(-8).

2) TENX: This subroutine has been built around the polynomial given by
the following equation:

P(x) = (a0 + a1*x + a2*x^2 + a3*x^3 + a4*x^4 + a5*x^5 + a6*x^6 + a7*x^7)^2

where x ∈ [0, 1] and

a0 = 1
a1 = 1.15129277603
a2 = 6.6273088429 x 10^(-1)
a3 = 2.5439357484 x 10^(-1)

- 34 -

36

a4 = 7.295173666 x 10^(-2)
a5 = 1.742111988 x 10^(-2)
a6 = 2.55491796 x 10^(-3)
a7 = 9.3264267 x 10^(-4)

The relative error on the interval [0, 11 for 10^x as approximated by
P(x) is less than 5 x 10^(-9).

3) TANX: This subroutine has been built around the polynomial given by

P(x) = x(a0 + a1(x^2) + a2(x^2)^2 + a3(x^2)^3 + a4(x^2)^4 +
a5(x^2)^5 + a6(x^2)^6),

where
a0 = 7.853981762291 x 10^(-1)
al = 1.614897776174 x 10^(-1)
a2 = 3.98659104705 x 10^(-2)
a3 = 9.8345945393 x 10^(-3)
a4 = 2.7974335037 x 10^(-3)
a5 = 2.031171084 x 10^(-4)
a6 = 4.109741948 x 10^(-4)

The relative error on the interval [0, 1] for tan(4/π * x) as
approximated by P(x) is less than 1 x 10^(-8).

4) ATANX: This subroutine has been built around the polynomial given by

P(x) = x(a0 + a1(x^2) + a2(x^2)^2 + a3(x^2)^3 + a4(x^2)^4 +
a5(x^2)^5 + a6(x^2)^6 + a7(x^2)^7 + a8(x^2)^8),

where

a0 = 9.999999847657 x 10^(-1)
al = -3.333307334505 x 10^(-1)
a2 = 1.999261939166 x 10^(-1)
a3 = -1.420364446652 x 10^(-1)
a4 = 1.06409340253 x 10^(-1)
a5 = -7.50429453889 x 10^(-2)
a6 = 4.26915192711 x 10^(-2)
a7 = -1.60686289604 x 10^(-2)
a8 = 2.8498896208 x 10^(-3)

The relative error on the interval [0, 1] for arctan(x) as
approximated by P(x) is less than 1 x 10^(-8).

- 35 -

37

APPENDIX D

KIMath Addresses

CALCULATION SUBROUTINES

ADDRESS NAME

F808 ADD
F800 SUB
F90B MLTPLY
FA16 DIVIDE
FA9E SQRT
FAE7 LOG
FB41 TENX
FB5C TANX
FB78 ATANX

UTILITY ROUTINES

FEF0 SAVXY
FEF5 RCLXY
FEE8 IPREC
FE0A PLOADX
FE23 PLOADY
FE8A ULOADX
FEA2 ULOADY
FE3C PSTRES
FEBA USTRES
FD92 USRLKP
FDC1 POLY
FD71 CLRX
FD7C CLRY
FD87 CLRZ
FBC3 DECHEX
FCBF XSY

- 36 -

38

WORKING STORAGE

PAGE ZERO
STARTING ADDRESS NAME
---------------- ----

10 PREC
11 EXTRA
06 ARGXL
07 ARGXH
08 ARGYL
09 ARGYH
0A RESL
0B RESH
0E KONL
0F KONH
01 NKON
05 DEG
03 CNT

COMPUTATION REGISTERS

STARTING ADDRESS NAME
---------------- ----

0235 RX
0235 SX (sign)
0246 EX (exponent)

O247 RY
0247 SY
0258 EY

0259 RZ
0259 SZ
026A EZ

- 37 -

39

