
March 30, 2004

A Robust Strategy for Finding All Real and Complex
Roots of Real Polynomials

by C. Bond, c©2003

http://www.crbond.com

Abstract

This paper presents a new strategy for extracting real and com-
plex roots of a real polynomial. The method directly addresses two
of the major difficulties in root finding: one, the presence of roots of
multiplicity greater than unity and two, the requirement for accurate
root estimates to initialize iterative solvers. The strategy leads imme-
diately to the development of a robust front end for an iterative solver
which may be one of several previously published methods, including
Newton’s, Bairstow’s, Muller’s, etc.

1 Background

The roots of polynomials are of interest to more than just mathematicians.
They also play a central role in applied sciences including mechanical and
electrical engineering where they are used in solving a variety of design prob-
lems. Analysis of circuits and systems which involve damping, filtering, res-
onance, impulse response, and so on often depends in some way on the con-
struction of polynomials and the extraction of their roots. The literature
devoted to finding roots of polynomials is extensive and testifies to the prac-
tical importance of the subject.

It is known that arbitrary polynomials of order 5 and above cannot be ex-
plicitly solved by simple algebraic formulae, and it is because of this that the
need for solutions motivates the study of numerical methods. Indeed, the
branch of mathematics known as numerical analysis owes much to the con-
tributions and discoveries made in the search for accurate polynomial root
finding methods.

Roots of Real Polynomials .page 2

2 Polynomial Properties and Notation

The class of polynomials addressed in this paper include all polynomials in
a single variable with real coefficients. For convenience, and without loss
of generality, we only deal with monic polynomials which can be simply
obtained by dividing all coefficients of a given polynomial by the coefficient
of the term with highest order. It is easily verified that the roots of the
original polynomial and the transformed monic polynomial are identical.

A general polynomial in x can be symbolically represented by a power series
in the following form,

P = P n(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a1x + a0, (1)

where n is the exponent of the term with the highest power and is called the
order of the polynomial. It is necessary that the constant term, a0, differ
from zero. Otherwise the polynomial contains the variable x in all terms
and, hence, zero is automatically a root. This root may be removed from the
problem space by dividing the polynomial by x recursively until the constant
term is nonzero. This operation is exact, because it only requires reducing
the exponents by one. The other coefficients are not constrained may have
any real value, including zero.

Another representation, expressing the polynomial as a product of factors is,

P n(x) = (x− r1)
a(x− r2)

b · · · (x− rj)
s(x− rk)

t, (2)

where the rm are roots of the polynomial and the superscripts a, b . . . s, t are
exponents which may have integer values of unity or greater. We will some-
times refer to the exponent of a factor as the multiplicity of the associated
root. Note that an arbitrary polynomial may have any combination of single,
double or higher power roots, but the requirement for real valued coefficients
means that complex roots must occur in conjugate pairs. Hence, if there is
a root represented by the factor x− (α + jβ), then there will also be a root
with the factor x− (α− jβ).

For the polynomial in (2) the sum of all exponents is equal to n.

In a very concrete sense, the task of root finding is to transform the polyno-
mial given as (1) into the form (2) where the roots are explicitly represented.

Roots of Real Polynomials .page 3

3 Multiple Roots

Polynomials with roots of multiplicity greater than one, often called repeated
roots or multiple roots, present special problems to numerical solvers. The
reason for this deserves some discussion, as these problems are not entirely
soluble in a finite precision environment and the best we can hope for is to
not make them worse.

The major problem which degrades the performance of iterative solvers fol-
lows from their typical dependence on the slope of the polynomial in the
neighborhood of a zero. Newton’s method, for example, computes correction
terms for estimated roots from the derivative at the current approximation to
a root. Unfortunately, as will be explained in the next section, the derivative
becomes zero at a multiple root and stays very close to zero in the immediate
neighborhood.

Appealing to bisection or search strategies does not solve the multiple root
problem either. This is because when the slope becomes very close to zero
near a root, unacceptably large neighborhoods of the root may be indistin-
guishable from zero, rendering bisection error metrics unstable. The higher
the multiplicity of the root, the worse the problem.

3.1 Differentiation of Polynomials

The differentiation of a polynomial has two significant effects which can be
exploited in root finding. First, differentiation reduces the order of all mul-
tiple roots by one. Second, the roots with unit order do not appear in the
derivative polynomial. Hence, if there are no roots of multiplicity greater
than one in the original polynomial, the derivative polynomial will have no
roots in common with it. On the other hand, double, triple, or higher order
roots will survive the differentiation and appear in the derivative polynomial,
but with lower order.

To illustrate, we differentiate a simple cubic polynomial which has a pair of
identical roots and a single distinct root. The power series form of the cubic,
x3 + a1x

2 + a2x + a3, will have a derivative polynomial of 2nd order whose

Roots of Real Polynomials .page 4

monic form is x2 + b1x + b0.
1

Putting the cubic in product form, (x− r1)
2(x− r2) and differentiating, we

have

(x− r1)
2 + 2(x− r1)(x− r2) = (x− r1) ((x− r1) + 2(x− r2)) (3)

= (x− r1)(3x− r1 − 2r2). (4)

Note that the factor (x − r1) is present in the derivative as well as in the
original polynomial and therefore represents a common factor. Notice also
that the factor of unit order (x− r2) is not present in the derivative.

The appearance of a root factor of the original polynomial in its derivative
clearly highlights why and how multiple roots confound iterative solvers.
Near a zero of the polynomial, the derivative also becomes zero. For the
näıve Newton’s method, the correction term f(x)/f ′(x) approaches 0/0 and
becomes numerically unstable.

3.2 Euclid’s Algorithm

Although the presence of multiple roots has been shown to cause conver-
gence problems with iterative solvers, it also suggests a solution from outside
the traditional domain of numerical analysis. Since multiple roots are asso-
ciated with the presence of common factors in the original polynomial and
its derivative, a decomposition which recovers common factors could lead to
solution strategy.

Such a decomposition is possible using Euclid’s algorithm.2 The method used
is to divide the original polynomial by its (monic) derivative and test the re-
mainder for zero, indicating the presence of common factors. This operation
is numerically stable and can generally be done to machine precision.

1Note that the coefficient b0 may be zero, in which case the derivative polynomial has
a root at zero.

2Euclid’s algorithm is used to determine the greatest common divisor (GCD), some-
times called the greatest common factor (GCF), of two polynomials.

Roots of Real Polynomials .page 5

It is worth noting that the idea of using Euclid’s algorithm in the recovery of
multiple roots is not without critics. For symbolic or exact calculations no
special difficulties are evident. But in a finite precision environment, since
numbers may only be approximately represented, the results of division are
subject to error. In addition, the original polynomial coefficients may be
only approximate. Hence, it is argued that Euclid’s algorithm may be no
better at isolating multiple roots than an iterative solver. Nevertheless, the
author finds that slope or position driven iterative methods, as discussed
earlier, suffer from serious problems with error metrics in the neighborhood
of multiple roots and that Euclid’s algorithm has no such problem. Further-
more, if the algorithm fails to identify multiple roots for whatever reason,
the polynomial simply passes through to the solver, none the worse for wear.
The performance of the author’s implementation of the method presented in
this paper consistently exceeds that of the Jenkins-Traub method.3

Pseudo-code for the process is shown below.

begin
a← P
b← P ′

m← n
do

(q, r)← a/b
if r = 0, break
a← b, b← r
m = m− 1

while (m <> 0)
end

Polynomial Common Factor Algorithm

In this code, P is the original polynomial, n is its order, P ′ is the monic
form of its derivative and (q, r) respresents the quotient and remainder after
division. If the algorithm terminates with r = 0 the polynomial representing
the greatest common factor of the original polynomial and its derivative is

3Currently considered the standard for extracting the roots of polynomials.

Roots of Real Polynomials .page 6

in b. Otherwise there is no common factor. 4

For example, if the original polynomial can be written,

P = P 7(x) = (x− r1)
3(x− r2)

2(x− r3)(x− r4) (5)

then a (monic) version of the derivative can be written,

P ′ = (x− r1)
2(x− r2)(x− ra)(x− rb)(x− rc) (6)

where the expression (x − r1)
2(x − r2) is the greatest common factor and

would be the (monic) version of the polynomial returned in b above.

Now, as the previous example shows, the returned factor may also contain
multiple roots. Hence, finding the roots of b may still be difficult, although
easier than the original. However, since b is a factor of P , we can divide P
by b, with zero remainder, and recover the quotient q. Clearly, P = q · b,
and we have succeeded in finding a decomposition of P which isolates the
distinct roots in q, from their higher order multiples in b.

Following the decomposition it is possible to recover roots from the quotient
polynomial without the handicap of dealing with multiple roots. The re-
maining polynomial b can then be submitted to the same process recursively
until all roots of the original polynomial are found.

Although the divisions are subject to the typical accumulation of floating
point errors, polynomial differentiation is a stable operation involving simple
multiplication by small integers. The net effect of applying this strategy is
that the serious difficulties with multiple roots are avoided with only a very
small penalty.

4 Root Estimates

A second difficulty encountered in iterative solvers arises from the need for
reasonable estimates of the roots to begin the iteration. It is known that

4There are some details related to keeping track of the order of b not shown in the
pseudo-code.

Roots of Real Polynomials .page 7

convergence to some root, in general, can only be assured if the current esti-
mate is ‘sufficiently’ close to the desired root. Various methods for obtaining
such estimates have been published and have found their way into existing
solvers. One tactic is to assume zero as a starting estimate in the hope that
the solver will converge to the smallest root. Another is to devise an ap-
proximation to the smallest root based on the coefficients of the lowest order
terms. Attention is often directed to the smallest root because deflation of
the polynomial by a small root in preparation for subsequent root extraction
inflicts less damage on larger roots. In a sense, this is a damage control
strategy.

Root estimates can also be obtained by invoking a global root finder which
allows the recovery of all roots simultaneously. Graeffe’s method is one ex-
ample of such a method.

We have chosen the Quotient-Difference (QD) algorithm of Rutishauser as
part of the front end of a root finder because it converges to all roots without
the need for starting estimates. The QD algorithm is applied iteratively until
reasonable approximations to the roots are available. Certain difficulties need
to be overcome for use in a general solver, and these are discussed in the next
section.

4.1 The Quotient-Difference Algorithm

The QD algorithm is an extension of Bernoulli’s method, with the advantage
that it converges to all roots rather than just the dominant root. In spite of
this virtue, it is not desirable to attempt to find all roots of a polynomial with
high precision using the QD algorithm because it is a feed-forward method
which often converges slowly and is subject to the accumulation of rounding
errors. It can be formulated to serve as a viable root estimator, however, and
it will be used as such in the following development.

Some of the issues to resolve in implementing a robust, general purpose root
estimator using the QD algorithm are:

• Management of polynomials with one or more zero coefficients,

Roots of Real Polynomials .page 8

• Identification of complex roots,

• Algorithm termination criteria.

In addition to these considerations, it is desirable to be able to group root
estimates as quadratic factors so that solvers such as Bairstow’s method can
be employed. Solvers which operate on a single root at a time can still be
used by extracting pairs of estimates from the quadratics and refining them
successively with the solver.

4.1.1 Root Shifting

A stable formulation of the QD algorithm5 is initialized from the coefficients
of the given polynomial. Unfortunately, if any of the coefficients of the poly-
nomial are zero, the method fails. Hence, it is necessary to be able to trans-
form polynomials in such a way as to alter the coefficients but still be able
to recover the original roots.

One such transformation is a simple linear shift of the roots. This has the
effect of altering the coefficients and only requires that the estimated roots
which are recovered be shifted back by the same amount to undo the change.
A simple algorithm exists to transform polynomials in this manner, and
with an appropriate choice of shift values it is possible to assure that the
transformed polynomial is unlikely to fail.

The root estimation process consists of transforming the original polynomial
by shifting the roots, obtaining estimates of the quadratic factors of this
polynomial using the QD algorithm, and shifting the estimates obtained back
to their appropriate locations.

Complex roots are identified by the behavior of critical values in the QD
tableau. These roots, as might be expected, occur in conjugate pairs and will
be adjacent in the emerging root estimate list. It is not difficult to recover a
quadratic factor from the associated values. Unfortunately, the development

5A suitable version is given in “Elements of Numerical Analysis”, P. Henrici, John
Wiley & Sons, 1964, pp.162-179.

Roots of Real Polynomials .page 9

of quadratic factors from the root list is complicated by the arbitrary location
of conjugate pairs, which may occur anywhere. This problem can be managed
by building a list of quadratic factor estimates from the QD tableau by
identifying and extracting the conjugate pairs first and then collecting real
estimates in pairs from the remaining values.

5 Summary and Conclusion

Using the methods developed in the preceding exposition, we can now pro-
vide an overview of the improved root finding strategy. The overall method
separates the solution process into a front end, which removes roots of mul-
tiplicity greater than one and then generates reasonable estimates of the
remaining (quadratic) factors, and a back end which consists of an iterative
root finder. This paper discloses a new strategy for implementing a viable
and robust front end.

The front end is recursive, in the sense that polynomials consisting of prod-
ucts of the multiple root terms are recovered with successively reduced order
until the multiplicity is reduced to unity. The reduction process exposes
multiple roots one by one, so they can be divided out of the original polyno-
mial and added to an expanding root list which on conclusion of the process
contains all roots. As polynomial factors free of multiple roots are devel-
oped, they are submitted to the estimator for determination of estimates of
quadratic factors which are used in the back end solver to recover acceptable
root values. These are also added to the root list.

A description of the process can now be summarized as follows,

1. Copy the original (monic) polynomial to pa, pa ← P ,

2. Copy polynomial (monic) derivative to pb, pb ← p′a,

3. Find GCF of pa/pb using Euclid’s algorithm, (q, r) = pa/pb,

4. If GCF is 1, submit pa to estimator/solver, add roots to root list, goto
11

5. Divide GCF out of pa, q = pa/r,

Roots of Real Polynomials . page 10

6. If order of q is less than 3, add roots to root list, goto 10

7. Submit q to estimator/solver, add roots to root list,

8. If order of r less than 3, add roots to roots list, goto 10

9. Copy r to pa,

10. If more roots to find, goto 2

11. End

The solution process terminates with all roots found. Note that multiple
roots are extracted to machine precision by this method, and it is never
necessary for the iterative solver to deal with them.

The strategy described leaves untouched a problem which, as previously
mentioned, is intrinsically unsolvable in a finite precision environment. It
is always possible to construct a polynomial which includes roots which are
distinct, but whose difference is so small that that they are indistinguishable
in finite precision comparisons. Floating point math platforms can only ap-
proximate continuous functions with discrete, but small, steps. So even when
exact numbers are expressible in floating point form, simple operations can
cause a loss of precision which is not completely recoverable. Furthermore,
if the derivative of a polynomial in the neighborhood of a root or group of
roots is sufficiently close to zero, a change in the argument may produce an
even smaller change in the value of the function, making the construction
of an error metric difficult. Hence, in some pathological cases closely spaced
roots may be mistakenly identified as identical. In practice it turns out that,
because of roundoff errors and loss of precision, the possibility of mistaking
identical roots of high order for distinct roots is just as likely.

Nevertheless, and in spite of the limitations of finite precision floating point
arithmetic, the root finding strategy above has been shown to provide supe-
rior performance in the presence of multiple roots and has been implemented
and tested on a wide class of problem polynomials with excellent results.

Roots of Real Polynomials . page 11

5.1 Enhancements

Numerical analysts have devised a number of techniques for stabilizing poly-
nomials in the presence of certain catastrophic failure modes. One of the
most important of these is root scaling. Scaling is recommended whenever
there is a large disparity in the magnitude of the roots of a polynomial, a
condition which can be detected from properties of the coefficients. It is
strongly recommended that any implementation of the methods described in
this paper include a pre-scaler. See the literature for detailed information.

