
Engineering Notebook

miscellaneous problems and solutions

compiled by C. Bond Vol.1 no.14

Coefficients for Savitzky-Golay Filters

Savitzky and Golay1 defined a family of filters which are suitable for smoothing and/or
differentiating sampled data. The data are assumed to be taken at equal intervals.

The smoothing strategy is derived from the least squares fitting of a lower order poly-
nomial to a number of consecutive points. For example, a cubic curve which is fit to 5
or more points in a least squares sense can be viewed as a smoothing function.

Their method consists of finding coefficients for the jth order smoothing polynomial in
terms of the values of some number, k > j + 1, of adjacent points and computing the
value of the polynomial at the point to be smoothed.

At first glance, it appears that the computation of the appropriate coefficients for
the cubic needs to be repeated for each point. However, by solving the appropriate
equations in terms of a general point set it is possible to write an expression which is a
weighted sum of neighboring points with weights constant for a given polynomial order
and number of points.

We must solve the matrix equations:

Ax = y
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1“Smoothing and Differentiation of Data by Simplified Least Squares Procedures”,Abraham Sav-

itzky and Marcel J.E. Golay, Analytic Chemistry, vol. 36, no. 8, July 1964, pp. 1627-1639.
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and the ik are the relative distances from the point we are smoothing to the yk.

An example matrix formulation with the vector x representing the coefficient vector is:
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where a cubic, a0+a1i+a2i
2+a3i

3, is to be fit to 5 consecutive points, y−2, y−1, y0, y1, y2,
so that the central point at y0 occurs where i = 0. In other words, the horizontal axis
is shifted so that the y values are evenly spaced around the origin. By this means the
value of the cubic at the smoothing point is simply the value of the expression for a0.

Note that the matrix A contains the term 00. It is understood that this is equal to
unity, as is any other quantity raised to the zero power.

As it stands, Ax = y is an overdetermined system and a least squares solution to the
system is the desired result. Note that the solution values for the coefficients of the
cubic will be given symbolically in terms of the yi, since no numerical values for them
have been specified yet.

Least squares problems of this sort are easily solved by forming the ‘normal’ equations
for the system. That is, we solve the overdetermined system

Ax = y

where the matrix A has fewer columns than rows, y has the same number of rows as
A and x has the same number of columns as A.

The solution is formed by first multiplying A and y by the transpose of A, AT , giving

ATAx = ATy.

where ATA is now a square matrix.

Now multiply both sides by the inverse of ATA, so that

x = (ATA)−1ATy.

The solution to the normal equations provides more information than was expected.
Specifically, we found that the expression for the coefficient of a0 is a weighted function
of y which statisfies our requirement for a smoothing function. However, we may
differentiate the cubic and evaluate the derivative at zero to obtain a point on the
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derivative of the smoothed curve as well. This derivative is simply the expression
for the coefficient a1 already obtained in solving the normal equations. Similarly,
higher derivatives of the smoothed curve are available as the coefficients a2, a3, · · ·.
Note, however, that these coefficient expressions must be multiplied by 0!, 1!, 2!, · · ·, as
appropriate. That is, for the polynomial, p

dnp

din

∣∣∣∣
i=0

= n!ai.

To return to the example problem, we solve
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which gives

a0 =
−3y−2 + 12y−1 + 17y0 + 12y1 − 3y2

35
(1)

a1 =
y−2 − 8y−1 + 8y1 − 1y2

12
(2)

a2 =
2y−2 − y−1 − 2y0 − y1 + 2y2

14
(3)

a3 =
−y−2 + 2y−1 − 2y1 + y2

12
. (4)

To form the derivatives, the third and fourth of these equations must be multiplied by
2! and 3!, respectively, as mentioned previously.

If the symbolic form of the weighting function is not convenient, we may instead simply
compute coefficient values by replacing the symbolic vector y with a unit vector. To
compute the full set of coefficients for all derivatives (regarding the smoothing function
as a zeroth order derivative), solve Ax = I, where I is the j+1th order identity matrix.

We discussed the solution of the normal equations for the case in which the yn are
equally distributed around the point i = 0. However, it is legitimate to have more points
on one side of zero than there is on the other. For example, to start up the smoothing
process we might want the first point to be computed from a weighted function of the
first 5 points. In this case, the A matrix needs to be generated differently.


