Finding the Focal Point of a Spherical Mirror or Lens by C. Bond

The *focal point* of a concave mirror is that point at which light rays from a distant object are expected to converge. It is a central concept in the characterization of both mirrors and thin lenses.

For our derivation, we observe that it is only necessary to consider a crosssection of the mirror which passes through the center of curvature. By symmetry, the behavior of distant rays which strike the mirror elsewhere will be the same.

Figure 1: Ray Diagram

In the diagram, C is the center of the sphere which forms the contour of the mirror. \overline{CD} is a radius to the center of the arc. A ray from a distant object, \overline{OP} , parallel to \overline{CD} is reflected as ray \overline{PQ} intersecting \overline{CD} at F.

 \overline{CP} is a radial line from the center of the sphere and is therefore normal to the surface at P. The angle of incidence is equal to the angle of reflection, so $\angle OPC = \angle CPQ$. Let the angle of incidence $= \alpha$. Then $\angle CPQ = \alpha$ and $\angle PCD = \alpha$. $\angle PFD = 2\alpha$.

Now for the approximations. Assume the ray \overline{OP} is very close to \overline{CD} . In this case the arc \overline{DP} is short and very nearly a straight line perpendicular to \overline{CD} . With this approximation, $\tan(\angle DFP) = \tan(2\alpha) \approx \frac{\overline{DP}}{\overline{FD}}$. Also, $\tan(\angle DCP) = \tan(\alpha) \approx \frac{\overline{DP}}{\overline{CD}}$.

With \overline{OP} close to \overline{CD} the angles α and 2α are small. Hence, $\tan(\alpha) \approx \alpha$ and $\tan(2\alpha) \approx 2\alpha$. So $\frac{\overline{DP}}{\overline{FD}} \approx 2\frac{\overline{DP}}{\overline{CD}}$, or $\overline{CD} \approx 2\overline{FD}$. This places point F at the midpoint of radius \overline{CD} .

We have now shown that rays from distant objects whose paths are parallel to and sufficiently close to the radius through the center of a spherical mirror will, after reflection, pass through a common point, F, whose distance from the mirror is 1/2 the radius. This point is called the *focal point*.

In the literature, the focal point is usually identified with the symbol f, and the equation

$$f = \frac{r}{2}$$

where r is the radius of curvature is used.