
Notes on “L” (Optimal) Filters
by C. Bond, 2011

1 Background

In 1959 A. Papoulis1 published a paper which completed the description of a
new class of filters with ‘optimal’ properties, originally reported in 1958. In
particular, these low-pass filters exhibited the maximum possible rolloff con-
sistent with monotonic magnitude response in the pass band. The problem
under consideration was that Butterworth filters had monotonically decreas-
ing amplitude in the pass band, but did not exhibit the aggressive rolloff
associated with Chebyshev filters. On the other hand, Chebyshev filters ex-
hibited amplitude ripples in the pass band, which in some applications was
undesirable.

Papoulis found that the Legendre polynomials of the 1st kind2, can form the
basis for a suitable set of transfer functions. The new polynomials, Ln(ω

2),
are related to, but not the same as, the Legendre polynomials from which
they are derived.

In the following paragraphs, the generation of these polynomials will be dis-
cussed and examples of their application to the filter design problem will be
given.

2 Legendre Polynomials

Legendre polynomials, usually notated as Pn(x), belong to the class of orthog-
onal polynomials which include the Chebyshev and Laguerre Polynomials.

1A. Papoulis,On Monotonic Response Filters,Proc. IRE, 47, Feb. 1959, 332-333
2Abramowitz and Stegun,Handbook of Mathematical Functions, Dover, 1970, (332-

344,798)
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The first few are

P0(x) = 1 (1)

P1(x) = x (2)

P2(x) =
1

2
(3x2 − 1) (3)

P3(x) =
1

2
(5x3 − 3x) (4)

P4(x) =
1

8
(35x4 − 30x2 + 3) (5)

· · ·

Formulas and recurrence relations for the Legendre polynomials are given in
Abramowitz and Stegun.

3 Optimal Polynomials

The Ln polynomials have the following properties:

Ln(0) = 0

Ln(1) = 1

dLn(ω
2)

dω
≤ 0 (monotonic decreasing)

dLn(ω
2)

dω

∣

∣

∣

∣

∣

ω=1

= M (M maximum)

Papoulis’ original paper described only the odd ordered Ln polynomials.
In a later paper he completed the exposition to include the even ordered
polynomials.

For the odd order he gave

Ln(ω
2) =

∫

2ω2
−1

−1

[

k
∑

i=0

aiPi(x)

]2

dx (6)
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where n = 2k + 1 and the Pi(x) are the Legendre polynomials of the first
kind with the constants ai given by (i = 0, 1, 2, · · · , k)

a0 =
a1
3

=
a2
5

= · · · =
ai

2i+ 1
=

1√
2(k + 1)

. (7)

For example, L3(ω
2) has order n = 3. Thus k = (n − 1)/2 = 1. The index,

i, for this polynomial takes on consecutive values 0 and 1. We have,

a0 =
1√

2(k + 1)
=

1√
2(2)

, (8)

and

a1 =
3√
2(2)

. (9)

For even ordered Ln Papoulis found

Ln(ω
2) =

∫

2ω2
−1

−1

(x+ 1)

[

k
∑

i=0

aiPi(x)

]2

dx (10)

where n = 2k + 2.

For the ai there are two cases to consider:

Case 1 (k even, i = 0, 2, 4, · · · , k )

a0 =
a2
5

=
a4
9

= · · · =
ai

2i+ 1
=

1
√

(k + 1)(k + 2)

a1 = a3 = a5 = · · · = ai−1 = 0

Case 2 (k odd, i = 1, 3, 5, · · · , k)

a1
3

=
a3
7

=
a5
11

= · · · =
ai

2i+ 1
=

1
√

(k + 1)(k + 2)

a0 = a2 = a4 = · · · = ai = 0
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4 Filter Design

The design and analysis of filters is a branch of the broader subject of net-
work theory, which is concerned with the behavior of certain functions in the
complex s plane, where s = σ + jω. The specific function values of interest
include the magnitude along the imaginary axis. For this restricted case,
s = jω, and σ = 0.

The magnitude response of any low-pass, all pole filter can be given by

M(ω) =
K0

√

1 + f(ω2)
. (11)

The Ln polynomials form the desired filters from the rational function

M2(ω) =
1

1 + Ln(ω2)
(12)

where n is the order of the filter. This is a magnitude squared function.

The first step in transforming the magnitude squared function to the s plane
uses the following relations:

s = jω

s2 = −ω2

or, what is the same thing ω2 = −s2. Substituting in (12) we have

h(s2) = H(s)H(−s) =
1

1 + Ln(−s2)
. (13)

In network theory, the factoring schemata H(s)H(−s) is used to isolate the
positive real factors from their negative real counterparts. The reason has to
do with physical realizability. In order for the transfer function to represent
a stable network, the poles must be in the left half plane or on the jω axis.
Moreover, poles on the jω axis must be simple.

H(s) has all poles in the left half plane or on the jω axis. Its denominator
is the so-called Hurwitz polynomial which has zeros at the pole locations of
H(s).
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To find H(s) simply find all roots to the denominator polynomial of h(s2)
and discard those roots which represent poles in the right half plane.

5 Example

We will find the transfer function for the third order Optimal filter.

The third order Optimal polynomial is

L3(ω
2) = 3ω6 − 3ω4 + ω2, (14)

so the corresponding filter magnitude squared function is

M2(ω) =
1

1 + ω2 − 3ω4 + 3ω6
. (15)

Substituting −s2 for ω2 gives

h(s2) = H(s)H(−s) =
1

1− s2 − 3s4 − 3s6
. (16)

The denominator polynomial can be factored into the form

1− s2 − 3s4 − 3s6 = (s+ r1)(s+ r2)(s+ r3)(s+ r4)(s+ r5)(s+ r6) (17)

once the roots, rn, have been found. Now the rn are the zeros of the de-
nominator polynomial and, hence, poles of the transfer function. We want
none of these to occur in the right half plane, so we discard those values with
negative real parts. (If r1 is negative, s would have to be positive to form a
zero.)

We find that the Hurwitz polynomial is constructed from the following roots

s = 0.34518561903119696− j0.90086563551837810,

s = 0.34518561903119696+ j0.90086563551837810,

s = 0.62033181713012371,

where the complex roots appear in conjugate pairs, as expected.
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Now form the Hurwitz polynomial and complete the transfer function.

H(s) =
0.5773502691896

0.5773502691896 + 1.3589712494455s+ 1.3107030551925s2 + s3
,

(18)
where the value in the numerator is chosen for unity response at DC and the
number of significant digits in each coefficient is unnecessarily large.

From this point, the locations of the poles are known and parameters of
interest can be found using standard methods for any low-pass filter.

Appendix A

Here is a list of the first ten “L” polynomials.

n Ln(ω
2)

1 ω2

2 ω4

3 ω2 − 3ω4 + 3ω6

4 3ω4 − 8ω6 + 6ω8

5 ω2 − 8ω4 + 28ω6 − 40ω8 + 20ω10

6 6ω4 − 40ω6 + 105ω8 − 120ω10 + 50ω12

7 ω2 − 15ω4 + 105ω6 − 355ω8 + 615ω10 − 525ω12 + 175ω14

8 10ω4 − 120ω6 + 615ω8 − 1624ω10 + 2310ω12 − 1680ω14 + 490ω16

9 ω2 − 24ω4 + 276ω6 − 1624ω8 + 5376ω10 − 10416ω12 + 11704ω14 − 7056ω16 + 1764ω18

10 15ω4 − 280ω6 + 2310ω8 − 10416ω10 + 27860ω12−
45360ω14 + 44100ω16 − 23520ω18 + 5292ω20
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