
April 6, 2011

A New Line Drawing Algorithm
Based on Sample Rate Conversion

c©2002, C. Bond. All rights reserved.

1 Overview

In this paper, a new method for drawing straight lines suitable for use on
raster scan displays and plotters is presented. Unlike previous methods which
are based on DDA or midpoint algorithms, this technique is based on signal
processing concepts related to resampling, multirate processing and sample
rate conversion generally, and decimation in particular.

An algorithm based on spatial decimation is developed which has attractive
features including the elimination of test, compare and branch operations
within the inner plotting loop. Furthermore, all multiplies, divides, shifts
and other complex CPU operations are eliminated from the inner loop, as
well.

Lines can be drawn in any orientation with ‘nearest pixel’ accuracy using only
the primitive CPU operations of addition (subtraction) and incrementing
(decrementing). With some CPU architectures, including current Intel and
AMD processors, it is possible to hold all variables in CPU registers so that
the only memory accesses required in the inner loop relate to the plotting
function.

2 Background

A variety of line drawing algorithms have been published in the literature.
Among these are algorithms by Bresenham [1], Wu [5] and others. The
central problem solved by these algorithms is to find a ‘best fit’ to an ideal
line, given the constraints imposed by a raster scan or integer grid limited
display. See also Pitteway [3], and Foley [2].

These prior art solutions are typically derived from the differential quanti-
ties associated with a straight line and focus on correct pixel selection or

1



improvements in efficiency.

The new method is based on signal processing concepts. For general infor-
mation about signal processing see Ifeachor [6] and Oppenheim [7].

3 The Algorithm

The derivation of the new algorithm will focus on applying decimation or rate
multiplying methods to the problem of drawing a line in the first octant.
The other octants can be supported by changing the signs of x and y, or
exchanging the roles of x and y, or both.

3.1 Decimation

In signal processing, a significant and recurrent problem has to do with align-
ing data sets associated with different sample rates. For example, it may be
necessary to convert a data set sampled at 48 kilosamples per second to data
set with equivalent sampling at 44.1 kilosamples per second. The challenge is
to align the ends of the source and target data sets, and devise a resampling
strategy which produces the target set from the source set with minimum er-
ror. When the target set has a lower sample rate (fewer samples per second)
this process is called decimation. The following figure illustrates decimation
for a short signal fragment.

bc
bc

bc bc bc bc bc bc bc bc bc
bc

bc
bc

bc bc

16 samples

bc
bc

bc bc bc bc bc
bc

bc
bc

bc

11 samples

In this figure, the upper trace represents a source data set consisting of 16
samples. The lower trace represents the same signal decimated (downsam-
pled) to 11 samples. It is offset vertically for clarity.

Decimation in a sampled digital environment is a dirty process, in the sense
that sometimes dubious assumptions are made about the behavior of the
signal between sample points. Nevertheless, most signals of interest are rea-

2



sonably smooth, so the errors are generally acceptable.

Since we will be applying decimation techniques to straight lines, rather
than arbitrary curves, there are no assumptions required and the process
introduces no errors other those inherent in the scan conversion.

How is decimation applied to the line drawing problem? Consider the line in
the figure below.

0 1 2 3 4 5
0

1

2

3

4

0

5

10

15

20

0 5 10 15 20 25

(x2, y2)

(x1, y1)

b

b

The x coordinates of each pixel can be viewed as a uniform sample set.
The y coordinates represent another sample set. Assuming, without loss
of generality, that the slope of the line is within the first octant, the x set
will be the larger of the two. Given the coordinates of the endpoints and
using decimation, we can generate the y coordinates by resampling the set
of x coordinates. In a sense, we have rotated the resampled sequence by 90
degrees.

The decimator is the key to making this process efficient. Its purpose is to
step along the same interval at two different rates. As applied here, it works
by algorithmically matching the y coordinate set to the x set by taking unit
steps along the x coordinate and stepping at a different rate along the y axis.
Since the y steps typically involve a fractional quantity, fixed point math will
be used to track the exact y value.

The integer part of y, which is the only part usable on the raster grid, is
found by updating a control variable which represents the fractional part of
the y coordinate at each step. When the control variable passes through
the next integer value, the y coordinate is incremented. The update value is
simply the ratio the total y distance over the total x distance. Note that this
process bears a superficial resemblance to line drawing by DDA methods,

3



but the emphasis on decimation suggests a new solution for the y coordinate
update problem.

3.2 The New Solution

The y coordinate is incremented when the fractional part of the control vari-
able overflows, increasing the integer part by unity. Now identify the y co-
ordinate with the integer part of the control variable and allocate a separate
integer (register) for the fractional part. If the fractional part is scaled so
that it occupies an entire unsigned integer, its overflow will generate a CPU
carry. By simply adding the carry to the y coordinate, we can update it
properly without any need for correcting the fraction or testing any of the
other variable quantities.

To understand how this is done, we must see how to scale the fractional
portion of the update quantity to fit an integer. Let the control variable
be cvar and the update quantity be incr. Assuming 16-bit integers,1 the
generating equation for incr is:

y2 − y1
x2 − x1

=
∆y

∆x
(1)

∆y

∆x
=

incr

65536
(2)

incr =
∆y

∆x
· 65536. (3)

The multiplication by 65536 is even simpler than a word shift, because 16-
bit integer division on most processors leaves the fractional part in a specific
register as a remainder. Just take that register as incr. cvar is initialized
to 32768 (0x8000), which is the fractional equivalent of 0.5.

The new algorithm is summarized in the following pseudo-code for the inner
drawing loop:

116-bit integers are not required by the algorithm. 32-bit integers could also be used.

4



1. cvar← 0x8000, incr← ∆y/∆x,

2. x← x1; y← y1,

3. plot x,y,

4. add incr to cvar,

5. add carry to y,

6. increment x,

7. repeat 3-6 until done (x = x2).

Observe that in step 5, if no carry is generated, the y coordinate will be
unchanged.

4 Conclusion

It has been shown that it is possible to devise a line drawing algorithm such
that the inner drawing loop requires no test, compare or branch instructions.
In addition, there are no complex CPU instructions, such as multiplies, di-
vides or shifts.

For the case shown, with the line in the first octant, we have identified the
y coordinate with the integer portion of the control variable, and allocated
a separate integer for the fractional part. By separating the integer and
fractional parts, we have found a means to employ the CPU carry bit as a
convenient, efficient device to transfer integer updates to the y coordinate
without auxiliary tests, branches or correction factors.

The following quantities are required to support the algorithm

x: The x coordinate,

y: The y coordinate,

incr: The update quantity,

cvar: The control variable.

All these values can be held in processor registers during the plotting process.

5



4.1 Optimization

For the basic algorithm operating in octant I, the x value and the loop
control variable both increment in unit steps at each iteration. Hence, it
may be possible to combine the two operations in such a way as to reduce
the number of increments by one, per iteration. There are several ways to do
this, and the performance advantage of any particular method is processor
dependent.

An even more efficient method results from allocating a 16-bit control variable
in memory followed by the 16-bit y-coordinate. Then, if the control variable
is updated using 32-bit adds, the y value is automatically updated without
additional operations. This eliminates step 5 of the algorithm.

4.2 Extension to other Octants

Interchanging the roles of x and y will map the algorithm for octant I to
octant II. Changing the signs the update quantities for x and/or y will map
to other quadrants. These modifications in combination will extend the basic
algorithm to work in any octant.

There are several high level strategies possible for implementing a general
line drawing algorithm. An obvious method is to implement 8 versions of
the algorithm, one for each octant, and traverse a decision tree to determine
the appropriate octant from the given line coordinates. Another is to derive
signed update quantities based on the required octant and use them for
incrementing (decrementing) and adding (subtracting) in the inner loop.

These methods have been used successfully by other line drawing algorithms
and are not detailed here.

5 Comments

5.1 Downsampling

The line drawing algorithm presented above is based on an efficient linear
downsampler (decimator) which has been used for many years by the author.
An observation that there was an equivalence between the integer indices used

6



in sample sequences, and the integer grid coordinates of the display inspired
the adaptation. A brief description of the downsampler should clarify its
functional equivalence with the line drawing routine.

In operation, the signal decimator uses the integer x and y values as indices
into source and target sample vectors, z[n] and z[m]. incr is initialized
to m/n, and x, y and cvar are initially set to zero. To start, z[0] ← z[0].
Operations may be performed in floating point or fixed point math, but recall
that cvar is a fraction.

In the inner decimation loop, x is incremented and cvar is updated by the
addition of incr. When cvar overflows, y is incremented and the array entry
for z[y] is set to z[x] + (z[x + 1] − z[x]) ∗ cvar. Iteration is continued until
x = n.

5.1.1 Decomposition of Control Variable

There are several ways to interpret the new algorithm. Its basic strategy is
to separate the integer and fractional parts of the control variable so the y
coordinate is identified with the integer part and is immediately accessible
to the plot routine without modification. The fractional part is cvar.

This decomposition operates the same way for the two 16-bit integers as
would a 32-bit fixed point control variable consisting of a 16-bit upper integer
part and a lower 16-bit fractional part. For the 32-bit variable, updating the
upper part occurs automatically with the addition of incr. However, the y
coordinate cannot be directly accessed except by right shifting the variable
by 16 bits. Furthermore, since the control variable must be maintained from
one iteration to the next, the right shifting must be done on a temporary
copy, involving another operation. Hence, the 32-bit solution requires a copy
operation followed by a 16-bit right shift. For comparative purposes the new
algorithm replaces the copy and right shift with a simple add instruction.

For Intel and AMD processors the code sequence using a 32-bit control vari-
able is:

mov tmpreg,rega ; tmp ← cvar

shr tmpreg,16 ; recover y coordinate

For the new algorithm, with separated integer and fractional parts, this is
replaced by:

7



adc yreg,0 ; update y

References

[1] J. E. Bresenham, “Algorithm for Computer Control of a Digital Plotter,”
IBM Systems Journal, 4(1), 1965, pp.25-30.

[2] James D. Foley, et al., “Computer Graphics, principles and prac-

tices,” Addison-Wesley Publishing Company, 1997, pp. 72-81.

[3] M. L. V. Pitteway, “Algorithm for Drawing Ellipses and Hyperbolae
with a Digital Plotter,” Computer J., 10(3), Nov. 1967, pp. 282-289.

[4] J. C. Rokne, et al., “Fast Line Scan Conversion,” ACM Transactions on

Graphics, 1990.

[5] X. Wu and J. G. Rokne, “Double-Step Incremental Generation of Lines
and Circles,” Computer Vision, Graphics and Image Processing, 37, pp.
331-334.

[6] Emmanuel C. Ifeachor and Barrie W. Jervis, “Digital Signal Processing,
A Practical Approach,” Addison-Wesley Publishing Company, 1993.

[7] Alan V. Oppenheim and Ronald W. Schafer, “Digital Signal Process-
ing,” Prentice-Hall, Inc., 1975.

8


