
Problems and Solutions in
Elementary Physics

by C. Bond

The following sections include solutions to a number of my favorite prob-
lems in elementary physics. Some of the solutions bear aspects resembling
that of a magician pulling a rabbit out of a hat. Others simply demon-
strate the remarkable power of a few seminal concepts to reveal the inner
workings of the real world.

Most of the problems yield to solution strategies other than the ones shown,
but these represent my own preference.

At some point in time, I expect to post similar documents containing
problems of a more advanced nature, but the problems here may interest
physicists and students at all levels.
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1 Kinematics Equations

Kinematics deals with problems involving distance, velocity, time and con-
stant acceleration. The restriction that acceleration is a constant for these
problems limits the scope of this subject, but a large body of applications
remains. Vector concepts are not generally employed, so that velocity is
undirected and equivalent to speed. Distance, denoted by x, refers to the
total distance travelled, not necessarily the distance between the starting
and stopping points. Force and mass are not involved in the kinematics
relations.

The first equation relates the distance covered by an object during some
time interval. Since the acceleration may be non-zero, the velocity may vary
during the time interval under consideration. The most useful relation is

v =
x

t
, (1.1)

where v is the average velocity, x is the total distance and t is the elapsed time.

Given that acceleration is to be constant, velocity may be uniformly in-
creasing or decreasing. A plot showing the case of increasing velocity is
shown in Fig. (1.1).
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Figure 1.1: Velocity Under Constant Acceleration

The relation between acceleration and velocity is

a =
v − v0

t
, or

v = v0 + at, (1.2)
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where v is the final velocity after the specified time has elapsed, v0 is the
initial velocity and a is the (constant) acceleration.

The average velocity for this case is

v = v0 +
v − v0

2
=

v + v0

2
(1.3)

Other useful equations can be derived from these elementary relations. It
is customary to develop a set of equations which involve only three of the
four quantities distance, velocity, acceleration and time. We already have an
equation relating velocity, acceleration and time, Eq. (1.2).

An equation involving distance, velocity and time requires substituting
Eq. (1.3) for v in Eq. (1.1).

x =
v + v0

2
t

We may now substitute Eq. (1.2) for v in Eq. (1) to derive an equation
relating distance, acceleration and time.

x =
v0 + at + v0

2
t

x = v0t +
1

2
at2 (1.4)

Eq. (1.2) can be rearranged to isolate t and then substituted for t in Eq. (1)
for an equation relating distance, velocity and acceleration.

x =
v + v0

2

v − v0

a

x =
v2 − v2

0

2a
(1.5)

A more convenient form for this equation is

v =
√

v2
0
+ 2ax, (1.6)

where v0 is often zero.
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1.1 Miscellaneous Problems in Kinematics

For some of the following problems the constant acceleration is due to
gravity and will be notated as a = g = 32 ft/sec2. ‘g’ may be positive or
negative depending on the context. Another quantity introduced is the
coefficient of static friction, µ, which represents the relative amount of
normal force which must be overcome in horizontal motion and typically
varies from 0 to 1. When µ = 1 it takes as much force to slide the object as
it does to lift it.

1.1.1 Minimum Time for a Vehicle to go from 0 to 60 mph.

The relevant equation is v = at, where a = µg. It is common practice to
assume that the maximum practical value of the coefficient of friction, µ,
for rubber tires on pavement is unity. In this case, converting mph to fps,
we have 60 mph = 88 fps, so

88 = 32 t

and t = 2.75 sec.

1.1.2 Minimum Stopping Distance

Suppose we want to determine the minimum stopping distance of an
automobile traveling at 60 mph. We again assume that the maximum
value of µ is unity. Then the maximum deceleration is −g. We find, from
Eq. (1.5),

x =
v2

2g
=

7744

64
= 121 ft.

Note that problems of uniform deceleration and acceleration differ by the
negative sign. We could have found the stopping time as the same as for the
previous problem and found the distance from x = v t = 44 × 2.75 = 121 ft.
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1.1.3 Flight of the Bumblebee

Railroad train Ta leaves station A, at a uniform speed of 30 mph toward
station B. Train Tb leaves station B at a uniform speed of 20 mph toward
station A. The stations are 50 miles apart.

When Ta starts, a bumblebee which had been resting on its front begins
flying toward Tb at 60 mph. When the bee hits Tb it reverses direction and
heads back to Ta. It continues these alternations until the trains collide.

How far does the bee travel?

This problem is simple but instructive, because it invites the unwary to try
a variety of unnecessarily complicated solution techniques. The essential
point is that the trains travel 50 miles and with the speeds given, the trip
will take 1 hour. But the bee travels at 60 mph, so the bee travels 60 miles.

2 Bouncing Ball

This interesting problem is not likely to be posed in your favorite physics
text, but it illustrates the value of mathematical concepts in physics.

A certain rubber ball has been found to exhibit a coefficient of restitution,
c = 0.9. This coefficient is the ratio of an objects velocity just after and just
before a collision (bounce). Then c = v1/v0, where v0 is the velocity before
the bounce and v1 is the rebound velocity.

From the kinematics equation, v =
√

2gh, for motion under the influence
of gravity, we find

c =

√

h1

h0
.

The ball will be dropped on a hard surface and the following problems
will be solved: 1) What total distance will the ball travel before it stops?
and 2) What is the total time the ball is in motion?
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Figure 2.1: Bouncing Ball on Hard Surface

Let the initial height from which the ball is dropped be h0. Then the peak
height on the first bounce is h1 = c2 h0. Similarly, the peak height on the
second bounce is h2 = c2 h1 = c4 h0. The total distance covered by the
bouncing ball is then

d = h0 + 2c2 h0 + 2c4 h0 + 2c6 h0 + · · · (2.1)

d = h0 + 2c2 h0(1 + c2 + c4 + · · · ) (2.2)

Let
S = 1 + c2 + c4 + · · ·

then,

S = 1 + c2(1 + c2 + c4 + · · · )
S = 1 + c2 S so,

S − c2 S = 1

S(1 − c2) = 1 and finally,

S =
1

1 − c2
(2.3)

We now have,

d = h0 + 2c2 h0 S

d = h0 +
2c2 h0

1 − c2
. (2.4)

Given the initial height, h0, the distance can now be found. For example, if
h0 = 6ft, d = 57.14 ft.
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We now determined the elapsed time. From the kinematics equation,
v = g t, for an object moving under the influence of gravity we have,

c =
v1

v0
=

t1

t0
,

where t0 is the time to fall from the initial height to the surface and t1 is the
time to reach the peak of the first bounce. So t1 = c t0.

Then

t = t0 + 2t1 + 2t2 + 2t3 + · · ·
t = t0 + 2c t0 + 2c2 t0 + 2c3 t0 + · · ·
t = t0 + 2t0(c + c2 + c3 + · · · ) (2.5)

Now let

S = c + c2 + c3 + · · ·
S = c + c(c + c2 + c3 + · · · ) then,

S = c + c S so,

S − c S = c and

S =
c

1 − c
. (2.6)

We have

t = t0 + 2t0 S = t0 +
2c t0

1 − c
.

From the kinematics equation, h = 1
2
g t2,

t0 =

√

2h0

g
.

Finally,

t = t0

(

1 +
2c

1 − c

)

=

√

2h0

g

(

1 +
2c

1 − c

)

(2.7)

From the previous problem with initial height, h0 = 6ft,

t = 11.64 sec.
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3 Maximum Velocity in a Quarter Mile

To determine the maximum speed possible for a wheel driven vehicle, we
will assume that the coefficient of friction between the tires and the ground
is unity. For this case, the maximum acceleration is one g. We can use a
simple equation from kinematics to solve for vmax,

vmax =
√

2gd,

where d is the distance. Then

vmax =
√

2 × 32.2 × 1320

vmax = 291.6 ft/sec = 198.8 mi/hr (3.1)

It was long held that the assumption of unity coefficient of friction was
appropriate for a wheel driven vehicle with rubber tires. However, this
is incorrect if the tires develop significant viscous friction against the road
surface. In fact, the viscous friction developed by melting rubber has a
coefficient proportional to velocity — the faster the tires rotate, the greater
the motive force.

With the development of dragster engines capable of spinning the wheels at
high rates the maximum speed limit calculated above has been completely
shattered. The current record is greater than 300 mph with no end in sight!

4 Rolling Up A Ramp

Here are a few problems which involve rotational kinetic energy.

4.1 Maximum Height of Ball

A solid ball is rolled toward a ramp. How high will it be when it stops and
begins to roll back down?
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h

Figure 4.1: Ball Rolling Up A Ramp

The linear kinetic energy as the ball approaches the ramp is

K.E.linear =
1

2
mv2. (4.1)

Since the ball rolls without slipping, v = ωR.

The rotational kinetic energy is

K.E.rotational =
1

2

(

2

5
mR2

)

ω2

=
1

5
mv2, (4.2)

so the potential energy at the top of the rise is

P.E. = K.E.linear + K.E.rotational

mgh =
1

2
mv2 +

1

5
mv2

mgh =
7

10
mv2

h =
7

10

v2

g
. (4.3)

Thus the height, h, does not depend on the ramp angle or the mass of the
ball. It only depends on the initial velocity and the acceleration due to
gravity.

Note that some simplifications assumed by the solution are that no kinetic
energy is lost when the ball strikes the ramp, and that the heights are
actually those of the center of gravity of the ball.
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4.2 Hoop, Disk, Cylinder and Sphere

A hoop, a disk, a cylinder and a sphere have the same mass and the same
diameter. Each is rolled toward a ramp with the same initial velocity.
Which one will reach a higher point on the ramp?

This problem simply involves the conversion of kinetic energy to potential
energy. The total kinetic energy when each object is released consists of its
forward kinetic energy and its rotational kinetic energy. Hence, for each
object

P.E. = K.E. =
1

2
m v2 +

1

2
Iω2.

where I is the rotational inertia.

The forward kinetic energy for each object is the same, but the rotational
kinetic energy depends on the distribution of mass around the center.

The following table shows the values of I and KER for several simple
shapes.

Shape Inertia KER

hoop m r2 m v2/2
hollow cylinder m r2 m v2/2
disk m r2/2 m v2/4
solid cylinder m r2/2 m v2/4
hollow sphere 2m r2/3 m v2/3
solid sphere 2m r2/5 m v2/5

A little thought confirms that I is the same for a hoop and hollow cylinder
having equal masses and diameters. Similarly, I is the same for a disk and
solid cylinder.

Clearly, the object with the largest rotational inertia will reach the greatest
height on the ramp. Given the values for I from the table, the hoop will
reach the highest point.
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5 Height of Water in Tank

A water tank has sprung a small leak at a point 2 feet from its base on the
ground. A second leak, directly over the first, is 5 feet from the base.

A passing physics student noticed that the two streams issuing from the
tank were striking the ground at the same spot. He then realized he could
calculate the height of the water in the tank. What were his results?

bc

bc

h

h2

h1

Figure 5.1: Water Tank With Two Leaks

We begin by determining the velocity of the water issuing from the two
leaks using Torricelli’s theorem. We will use subscripts to link the relevant
equations to their respective streams, and insert the known values at the
end.

v2
1 = 2g(h − h1) (5.1)

v2
2 = 2g(h − h2) (5.2)

We can find the time required for each stream to strike the ground from
the kinematics equation y = vt0 + 1/2gt2. For this problem t0 = 0.

h1 =
1

2
gt2

1 (5.3)

h2 =
1

2
gt2

2 (5.4)
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Solving (5.3) and (5.4) for t2,

t2
1 =

2h1

g

t2
2 =

2h2

g

The horizontal distance travelled by each stream is vt. We have v1t1 = v2t2

or

(v1t1)2 = (v2t2)2

so, substituting from the above

2g(h − h1)
2h1

g
= 2g(h − h2)

2h2

g

(h − h1)h1 = (h − h2)h2

hh1 − h2
1 = hh2 − h2

2

h(h1 − h2) = h2
1 − h2

2

h =
h2

1
− h2

2

h1 − h2

=
(h1 + h2)(h1 − h2)

h2 − h2

so,

h = h1 + h2. (5.5)

Given that h1 = 2 ft and h2 = 5 ft the height of the water in the tank h = 7 ft.

6 Bead Sliding on Wire

In the figure, a vertical hoop supports a wire which is attached from the
top of the hoop to any other point. Show that the time required for a
frictionless bead to slide down the wire is the same for any destination
point. The relevant kinematics equation is

x = v0t +
1

2
at2. (6.1)
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Figure 6.1: Diagram of Bead on Wire

The acceleration is g cosθ. Since v0 is zero, we can write

x =
1

2
cosθgt2. (6.2)

But x = 2R cosθ from geometry. So

2R cosθ =
1

2
cosθgt2 (6.3)

2R =
1

2
gt2 and, (6.4)

t = 2

√

R

g
, (6.5)

which is independent of the angle θ, and depends only on the radius of
the hoop and the acceleration due to gravity.

Note that the problem and its solution is unchanged if one end of the wire
is connected to the bottom of the hoop instead of the top.

Sir James Jeans, in his remarkable book ”An Elementary Treatise on The-
oretical Mechanics”, noted that the solution suggests an interesting mini-
mization problem. Namely, where to place a wire from a fixed point to an
inclined plane such that the time for a bead to slide from the point to the
plane is a minimum?

The practical form of the solution is to configure a vertical hoop in a plane
perpendicular to the ramp with its top at the fixed point P, and to adjust
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Figure 6.2: Bead Sliding From Point to Plane

its diameter until it just touches the ramp at point T. A wire from the top
to the point of tangency will provide the minimal time. Why? Because
every other path from the point will touch the hoop at the same time, but
the wire chosen is the only one which will have reached the plane in this
time.

7 James Bond’s Ski Saga

James Bond is skiing down a snowy slope in an attempt to escape a hostile
pursuer. Unfortunately, the pursuer has a speed advantage since James is
only able to go 20 mph and the pursuer is travelling at 25 mph. Since they
are only 1000 feet apart at the beginning, the gap will close in only a few
minutes — unless something tips the balance.

James notes that he and his pursuer carry the same kind of rifle and es-
timates that their masses are about the same. Recalling his elementary
physics, he realizes that each time he fires his weapon back at the pursuer,
his forward momentum and velocity will increase. On the other hand,
when the pursuer fires his momentum and velocity will decrease.

Every time James fires a round, his adversary fires back. We would like to
know how many rounds James must fire to assure that his pursuer cannot
catch up with him. Assume that all rounds miss their targets (otherwise
this exercise would terminate).
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Let M be the mass of each, including the man, skis, weapon, backpack, etc.
The mass of each bullet is m, and the muzzle velocity is v. The governing
equation is then

20 M + n mv = 25 M − n mv so,

2n mv = 5 M (7.1)

where n is the number of rounds fired.

We would like to solve the problem using the cgs system of units. Then
5 mph = 223 cps.

Now let M = 10, 000 g, m = 15 g and v = 30, 000 cps. Substituting in (7.1),
we must solve

n =
223 · 104

2 · 15 · 3 × 104

n ≈ 25. (7.2)

Hence, when each man has fired 25 rounds, the gap between them will
stop decreasing and begin to increase, assuring James’ escape.

8 Moment of Inertia

In this section we derive formulae for determining the moment of inertia
or second moment of a mass around an axis for several common physical
shapes.

The moment of inertia is evaluated by summing the products of all mass
elements by the squared moment arm associated with the element.

8.1 Constant Moment Arm

The simplest case is that of a point mass, and the moment of inertia can be
immediately written as

I = mR2,
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where I is the moment of inertia, m is the mass of the object and R is the
distance from the axis to the object. It is worth noting that this relation also
holds for a thin hoop or ring with the axis perpendicular to the object and
through its center. By extension it also applies to a thin cylindrical shell
with the axis of rotation coincident with the axis of the cylinder. All these
shapes have essentially the same moment arm.

8.2 Moment of Disk or Solid Cylinder About Axis

We assume the axis of rotation is perpendicular to the disk and through its
center, and coincident with the axis of the cylinder.

Let the radius of the disk be R, and a mass element δm = σδS. A surface
element can be defined as δS = r dθ dr. Substituting the surface element

b

rδθ
δr

r

R
θ

Figure 8.1: Surface Element for Disk

into the equation for a mass element, we have δm = σr dr dθ. Since an
element of inertia can be expressed δI = δmr2, we can write

δI = σr2rδr δθ and,

δI = σr3 δr δθ (8.1)
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Summing the elements and taking limits gives

I = σ

∫ 2π

0

∫ R

0

r3 dr dθ.

Performing the integrations,

I = σ2π
R4

4
I = σπR4/2. (8.2)

The mass of the disk is σπR2. Substituting in 8.2,

I =
1

2
mR2.

8.3 Moment of Thin Spherical Shell About Axis

This problem can be set up in spherical coordinates so that conversions
from Cartesian coordinates are not required.

The mass element for this case is assumed to exist on the surface of a
sphere. An element of the surface area of a sphere, δS, is related to an
element of mass by δm = σδS, where σ is the mass per unit area. In the
figure, ρ = R sinθ is the length of the moment arm for the mass element.
Hence, δI = ρ2δm. The area of the surface element is Rδθ × R sinθδφ or
R2 sinθδθδφ.

Expanding, we have

δI = (R sinθ)2 δm

δI = R2 sin2 θσ δS

δI = R2 sin2 θσR2 sinθ δθ δφ

δI = R4σ sin3 θ δθ δφ

Summing the increments and taking limits, we may write the following
integral:

I = R4σ

∫ 2π

0

∫ π

0

sin3 dθ dφ
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Figure 8.2: Thin Shell Diagram

It is easiest to integrate with respect to φ first.

I = R4σ2π

∫ π

0

sin3 θ dθ

To solve this integral, recall that sinθ dθ = d(− cosθ). Making the substitu-
tion, mindful that changing the variable of integration requires changing
the integration limits as follows,

θ

∣

∣

∣

∣

∣

π

0

: cosθ

∣

∣

∣

∣

∣

−1

1

we can write,

I = 2πR4σ

∫ −1

1

sin2 θ d(− cosθ)

I = 2πR4σ

∫ −1

1

(1 − cos2 θ) d(− cosθ)

I = 2πR4σ

∫ −1

1

(cos2 θ − 1) d(cosθ). (8.3)

It may be convenient to replace cosθ in 8.3 with a simpler variable, say x.

21



We now have,

I = 2πR4σ

∫ −1

1

(x2 − 1) dx

I = 2πR4σ

∣

∣

∣

∣

∣

x3

3
− x

∣

∣

∣

∣

∣

−1

1

I = 2πR4σ

∣

∣

∣

∣

∣

(−1/3 + 1) − (1/3 − 1)

∣

∣

∣

∣

∣

I = 2πR4σ(4/3)

I =
8

3
πR4σ. (8.4)

Noting that the total mass, m, is σ4πR2, we can reduce (8.4) to

I =
2

3
mR2. (8.5)

8.4 Moment of Solid Sphere About Axis

The moment of enertia for a homogeneous, solid sphere about an axis
can be found by integrating spherical shells, by integrating disks, or by
solving the equations for the moment of an element of mass throughout
the volume. We will use the latter.

The moment of a mass element is I =
∫

V
l 2 dm, where dm = ρ dV, l is the

distance of the element from the axis and ρ is the mass density. Note that
the distance to an element from the center of the sphere is r and l = r sinθ
where θ is the angle between the axis and the radius. The volume element,
dV, is

dV = (2π l)(dr)(r dθ) = 2π r2 sinθ dr dθ. (8.6)

Since
ρ =

m

V
=

m
4
3
πR3

and dm = ρdv, the moment of inertia is

I =

∫

l 2 dm =

∫

(r sinθ)2ρ dV.
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Figure 8.3: Volume Element Diagram

For our sphere

I =

∫ π

θ=0

∫ R

r=0

(r2 sin2 θ)













m
4
3
πR3













(2π r2 sinθ) dr dθ

I =

∫ π

θ=0

∫ R

r=0

3m

2R3
r4 sin3 θ dr dθ

I =

∫ π

θ=0

3m

2R3

[

r5

5
sin3 θ

]R

r=0

dθ

I =
3

10
m R2

∫ π

θ=0

sin3 θ dθ

I =
3

10
m R2

∫ π

θ=0

sinθ(1 − cos2 θ) dθ. (8.7)

It is convenient to change the variable of integration from θ to − cosθ.

Let x = − cosθ. Then the limits of the above integral become

θ

∣

∣

∣

∣

∣

π

0

: x

∣

∣

∣

∣

∣

1

−1

.

23



The corresponding integral is

I =
3

10
m R2

∫ 1

−1

(1 − x2) dx

I =
3

10
m R2

[

x −
x3

3

]1

−1

I =
3

10
m R2((1 − 1/3) − (−1 + 1/3))

I =
3

10
m R2

(

4

3

)

Finally,

I =
2

5
m R2. (8.8)

9 Vertical Loop

Here are a few problems involving the transformation of kinetic energy to
potential energy and vice versa.

9.1 Ball on String

A small ball at the end of string is swung in a circular vertical loop. The
speed of rotation is decreased to the point that the tension on the string at
the top of the loop drops to zero. Analyze the system for this condition.

The forces on the ball consist of its weight, the centrifugal force due to
motion along a circular path and the tension from the string which provides
the centripetal force.

Ft =
mv2

l
−mg − Ts, (9.1)

where Ft is the sum of the forces, m is the mass of the ball, l is the length
of the string and Ts is the tension. At the top of the loop, the forces are in
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b

Figure 9.1: Ball Swung in Vertical Loop

equilibrium so Ft = 0. Let vt be the velocity of the ball at the top. If the
tension drops to zero there we have

mv2
t

l
= mg, so, (9.2)

v2
t = gl and, (9.3)

vt =
√

gl. (9.4)

The kinetic energy of the ball at the top of the loop is

mv2
t

2
. (9.5)

At the bottom of the loop, the kinetic energy is increased by the potential
energy at the top. From this we can determine the velocity at the bottom

mv2
b

2
=

mv2
t

2
+ 2mgl (9.6)

Solving for vb:

v2
b = v2

t + 4gl (9.7)

v2
b = gl + 4gl = 5gl (9.8)

vb =
√

5gl. (9.9)

The total force on the ball at the bottom is the sum of the centrifugal force
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and its weight. This determines the tension on the string.

Fb =
mv2

b

l
+mg (9.10)

Fb =
5mgl

l
+mg (9.11)

Fb = 6mg. (9.12)

So when the rotation rate is such that the ball experiences no vertical forces
at the top of the loop, it experiences 6 g’s at the bottom.

9.2 Cart on Track

Here we have a cart on a track which consists of a vertical circular loop. Of
course we do not want the cart to fall off the track at the top of the loop, so
it must have sufficient forward velocity that its centrifugal force keeps it in
contact. We wish to find the height from which the cart must be dropped
on the leading ramp to satisfy this requirement.

Pb

h

Figure 9.2: Cart Rolling Around Loop

We know from the previous problem, that the velocity of the cart at the top
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of the loop must be

vt =
√

gR (9.13)

where R is the radius of the loop, and g is the acceleration due to gravity.
Since we are assuming that friction is negligible, the kinetic energy at point
P must the same as the kinetic energy at the top of the loop. This energy
must be provided by the conversion of potential energy to kinetic energy
from the point of release of the cart to point P.

So mgh = mv2
t /2 or

h =
v2

t

2g
.

Substituting from Eq. (9.13),

h =
R

2
.

This is the height above point P from which the cart must be dropped. The
total height above ground is R/2 + 2R = 5R/2.

9.3 Pole Vault

A pole vaulter performs the remarkable feat of converting his forward
kinetic energy to vertical potential energy. Using this information, we can
estimate the maximum height possible for a pole vault. We assume (not
quite correctly) that the pole itself cannot store and release energy during
the vault. Also assume that the conversion is lossless.

Suppose the vaulter can run at 20.5 mph. This is about 30 fps. Then his
kinetic energy at the start of the vault is KE = mv2/2 = 450 m. His potential
energy at the top of the vault is PE = mgh = 32m h. So

h = 450/32 ft = 14 ft.

But this height refers to the height of the center of gravity of the vaulter. At
the start of the vault, his center of gravity is about 3.5 ft above the ground.
When he clears the bar, it is about 5 in = 0.41 ft above the bar. Hence the
maximum height of the bar must be 3.5 + 14 − 0.41 ft = 17.1 ft above the
ground.
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This height was actually reached during the 1960s and established a world
record at the time. By 1991 the record had soared to over 20 ft, a height
which was achieved by Ukranian athlete, Sergei Bubka. The increased
heights are largely due to improvements in the pole, which allow the
vaulter to store energy in the pole by flexing it just before the jump. This
energy is returned during the jump to contribute to the overall height.

It is clear the a taller pole vaulter has an advantage over his shorter com-
petitors by the increased height of his center of gravity. Perhaps in the
future a handicap system would be appropriate.

10 Cue Ball Slip Problems

10.1 Slip Problem #1

A cue ball is struck along a line through its center and parallel to the table.
It moves forward initially with zero angular rotation, sliding across the
felt, but eventually rolls without slipping. How far does it travel before
pure rolling motion occurs?

b

R

N

mgµmg

Figure 10.1: Cue Ball Motion Diagram

This interesting problem yields to elementary linear and rotational kine-
matics. It’s worth making a few preliminary observations about the prob-
lem.
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First, the initial linear velocity imparted to the cue ball, v0+ = v, is a
maximum at the moment of impact. During the course of travel the velocity
will decrease due to the frictional drag exerted by the table felt on the
ball. At the same time, a torque will be exerted on the ball by this same
frictional force. Although the problem does not require consideration of
kinetic energy, it is clear that the initial kinetic energy is purely linear and
when slippage stops the resulting kinetic energy is distributed between
linear kinetic energy and rotational kinetic energy.

The normal force, N, at any time, is simply due to gravity and is mg. The
frictional force due to drag is thenµmg, where µ is the coefficient of friction.
The drag is responsible for the only acceleration on the cue ball.

The velocity at any time is

vt = v + at = v − µgt. (10.1)

The torque, τ, is µmgR. But τ = Iα, where I is the moment of inertia and α
is the angular acceleration. Since it is known that the moment of inertia of
a solid sphere about its center is

2

5
mr2,

we can solve for the angular acceleration.

α =
τ

I
=
µmgR
2
5
mR2

=
5

2

µg

R

The angular velocity is ωt = ω0 + αt where ω0 is zero. Thus,

ωt = αt =
5

2

µg

R
t. (10.2)

Pure rolling motion occurs when vt = Rωt. Substituting from (10.1) and
(10.2) and solving for t,

v − µgt = R
5

2

µgt

R
=

5

2
µgt

v =
7

2
µgt, so,

t =
2

7

v

µg
.

29



We can now find the distance from d = vt + 1
2
at.

d = vt − µgt2

d = v

(

2

7

v

µg

)

−
1

2
µg

(

2

7

v

µg

)2

d =
2

7

v2

µg
−

2

49

v2

µg

d =
12

49

v2

µg
(10.3)

10.2 Slip Problem #2

At what point should a cue ball be struck so that it immediately rolls with
no slipping?

The objective here is to impart a rotational velocity as well as a linear
velocity such that the equation

v = ωR (10.4)

is satisfied.

b

R

h

Figure 10.2: Cue Ball Motion Diagram #2

This problem can be recast in the following form: At what point should the
cue ball be struck so that the ball rotates around its point of contact with
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the table? The condition is valid at the moment of impact even though
subsequent movement of the ball will be constrained by the table surface.

We begin by finding the moment of inertia of the ball around the point
of contact. Using the parallel axis theorem, Ip = Ig + mk2, where Ig is the
moment of inertia around the center of mass and k is the distance from the
center of mass to the new point of rotation. This new point is one radius
away from the center.

Ip =
2

5
mR2 +mR2

Ip =
7

5
mR2 (10.5)

(10.6)

The impulse at the moment of impact results in a change of momentum F′ =
mv. Note that v0 = 0. The corresponding change in angular momentum is
F′ · (R + h) = Ipω. We now have, substituting from (10.4),

mv(R + h) =
7

5
mR2 v

R

R + h =
7

5
R

h =
2

5
R. (10.7)

11 Object on a Bowling Ball

11.1 Bug on a Bowling Ball

A bug sitting on top of a bowling ball begins to slide off with negligible
friction. Determine the angle at which the bug leaves the surface.

This problem is easily solved with the aid of the diagram in Fig. (11.1). The
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Fn

θ
θ

h

r

mg

Figure 11.1: Bug on a Bowling Ball

forces on the bug include the centripetal force due to gravity, the centrifugal
force due to motion along the curve and the resulting normal force.

Fn =
mv2

r
−mg cosθ (11.1)

The gain in kinetic energy as the bug slides is provided by the loss in
potential energy. Since h = r − r cosθwe have,

mv2

2
= mgh

mv2

2
= mgr(1 − cosθ)

mv2

r
= 2mgr(1 − cosθ) (11.2)

At the moment the bug leaves the ball, the normal force Fn becomes zero.
We can now substitute the value of the centrifugal force from 11.1 into 11.2.

mg cosθ = 2mgr(1 − cosθ)

cosθ = 2 − 2 cosθ

cosθ = 2/3

θ = arccos(2/3) and finally,

θ = 48.2 degrees. (11.3)
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11.2 Marble on a Bowling Ball

This problem examines the behavior of a marble as it rolls without slipping
from the top of a bowling ball to the point at which it leaves the surface.
In Fig. (11.2) R is the radius of the bowling ball and r is the radius of the
marble.

b

b

b

Fn

θ
θR

mg

Figure 11.2: Marble on a Bowling Ball

The initial conditions require that the linear and rotational kinetic energies
are zero. When the marble leaves the surface of the bowling ball, the sum
of these energies must equal the loss in potential energy. Since the marble
rolls without slipping, at any instant v = Rω.

We begin by finding an expression for the rotational kinetic energy in terms
of v.

K.E.rotational =
1

2

(

2

5
mR2

)

ω2

=
1

5
mv2 (11.4)

The total kinetic energy is

K.E.total =
1

2
mv2 +

1

5
mv2 =

7

10
mv2.

The initial potential energy is mg(R + r) and at the point of departure it is
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mg(R + r) cosθ. The loss in potential energy is mg(R + r)(1 − cosθ), so

mg(R + r)(1 − cosθ) =
7

10
mv2

g(R + r)(1 − cosθ) =
7

10
v2

v2 =
10

7
g(R + r)(1 − cosθ) (11.5)

The normal force on the marble is mg cosθ − mv2/(R + r) and at the point
of departure this becomes zero so,

mg cosθ =
mv2

R + r

cosθ =
v2

(R + r)g

v2 = cosθ(R + r)g. (11.6)

Substituting for v2 in (11.5) and (11.6),

cosθ(R + r)g =
10

7
(1 − cosθ)(R + r)g

cosθ =
10

7
(1 − cosθ)

cosθ +
10

7
cosθ =

10

7
17

7
cosθ =

10

7

cosθ =
10

17

θ = arccos
(

10

17

)

and finally,

θ ≈ 54.0 degrees. (11.7)

12 Volume of Solid Ring

A solid sphere is bored out such that the radial axis of the removed cylin-
der passes through the center. The ring of remaining material stands 6
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centimeters high. What is the volume of this ring?
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Figure 12.1: Sphere with Cylindrical Bore

One way to compute the volume of the ring is to subtract the volume of
the removed material from the volume of the original sphere. This bored
out material can be regarded as a right cylinder with spherical end caps on
the two flat surfaces.

Another way is to compute the volume of the partial sphere, excluding
the end caps, and then subtract the volume of the right cylinder. We will
choose this method.

Referring to Fig. (12.1), the volume of the partial sphere can be computed
by using the disk method and integrating from the top edge of the ring
to the bottom edge. Using the center of the sphere as the origin, x as the
horizontal axis through the center and y the vertical axis, the equation is

Vs =

∫ +3

−3

π x2 dy

=

∫ +3

−3

π(R2 − y2) dy. (12.1)

The right cylinder has volume

Vc = 6πr2

= 6π(R2 − 9) (12.2)

35



where r is the radius of the cylinder. Note the requirement: R ≥ 3.

So the volume of the ring is V = Vs − Vc. Subtracting (12.2) from (12.1)

V = π

∫ +3

−3

(R2 − y2) dy − 6π(R2 − 9)

= π

[

R2y −
y3

3

]+3

−3

− 6πR2 + 54π

= π(3R2 − 9 + 3R2 − 9) − 6πR2 + 54π

= 36π (12.3)

Surprisingly, this result is independent of the radius of the sphere. As
long as the radius R ≥ 3 the result holds. Hence, another way to compute
the volume of the ring is to compute the volume of a sphere with R = 3
representing the case of an infinitesimal bored out volume. This sphere, of
course, has volume given by

V =
4

3
πR3 = 36π

13 Orbital Velocity for Low Earth Orbit

Neglecting air friction, an object will maintain a low altitude orbit when
the centrifugal force due to its motion in a circular orbit is equal to the
gravitational force attracting it to earth.

Note that for this situation, the centripetal force is provided by gravitation,
attracting the object toward the earth’s center. The reactive force, directed
away from the earth is centrifugal.

The centrifugal force is

Fc =
mv2

r
,

where r is the radius of the orbit, m is the mass of the object and v is the
velocity. The orbital radius is assumed approximately equal to the earth’s
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Figure 13.1: Force Diagram for Object in Orbit

radius for low orbit. The gravitational force is

Fg = −mg, (13.1)

where g is the acceleration due to gravity. We are again assuming low
orbit.

Then Fc + Fg = 0 and

mv2

r
= mg

v2 = gr, and,

v =
√

gr. (13.2)

Assuming earth’s radius to be 3960 miles, and the acceleration due to
gravity is 32 feet per second2, we have

v =
√

32/5280 × 3960

v = 4.9 mi/sec. (13.3)

14 Escape Velocity

An object will overcome the force of gravity when its kinetic energy in
the direction away from earth exceeds its potential energy. We find the
minimum kinetic energy required by solving K.E. = P.E..
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Then
mv2

2
= mgr,

where m is the mass of the object, v is its velocity, g is the acceleration due
to gravity and r is the radius of the earth.

Solving for v

v2 = 2gr

v =
√

2gr (14.1)

Taking the earth’s radius as 3960 miles and the acceleration due to gravity
as 32 feet per second2, we have

v =
√

2 × 32/5280 × 3960 (14.2)

which reduces to 6.9 miles per second.

15 Geosynchronous Orbit

Communications satellites can be placed in equatorial orbits at a distance
which results in an orbital period of one day. Thus the satellite occupies a
stationary position above the surface of the earth. To determine the height
of this orbit, we simply equate th centripetal force due to gravity with the
centrifugal force resulting from motion along the circular path.

Using Me for the mass of the earth, ms for the mass of the satellite, G for
the gravitational constant, ω for the angular velocity and h for the height
of the orbit above the earth’s surface, we have

GMems

(Re + h)2
= msω

2(Re + h)
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Then

GMe

(Re + h)2
= ω2(Re + h)

(Re + h)3 =
GMe

ω2

Re + h =

(

GMe

ω2

)1/3

Re + h =

(

(6.67 × 10−11) × (5.98 × 1024)

(7.27 × 10−5)2

)1/3

Re + h = 4.23 × 107

h = 4.23 × 107 − 6.37 × 106

h = 3.59 × 107 (meters). (15.1)

This is 22, 300 mi. and amounts to about 5.6 earth radii.

16 Simple Harmonic Motion

Harmonic motion is considered simple if it is undamped, i.e. if it continues
to oscillate uniformly over time.

Of particular interest are the frequency, f , or period, T of the oscillations.

Consider an object subject to only two forces: one due to the acceleration
of the object and the other due to a restoring force. The total force is

F = ma + kx,

where k is the spring constant or restoring force.

This can be expressed as a second order linear differential equation as
follows,

m
d2x

dt2
+ kx = 0

d2x

dt2
+

k

m
x = 0. (16.1)
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It is known that solutions to such equations involve trig functions. We de-
fine a generalized cosine as, x = A cos(ωt+φ). Then, dx/dt = −Aω sin(ωt+
φ) and d2/dt2 = −Aω2 cos(ωt + φ). Substituting in Ref. (16.1),

−Aω2 cos(ωt + φ) + A
k

m
cos(ωt + φ) = 0 (16.2)

So,

ω2 =
k

m

ω =

√

k

m
. (16.3)

But ω = 2π f = 2π/T. Hence,

f =
1

2π

√

k

m
and (16.4)

T = 2π

√

m

k
. (16.5)

17 Gravitational Field Inside a Spherical Shell

In this problem we prove that the gravitational field inside a thin spherical
shell of finite mass is zero. By extension, the field inside a thick shell whose
inner and outer radii are finite is also zero. In this figure, R is the radius of
the shell and M its mass. The mass per unit area is σ =M/S, where S is the
surface area. An object of mass m is located at point p, which is at distance
r from the center of the sphere.

An element of mass is given by dM = σ × 2πR × R sinθ dθ, which cor-
responds to the ring on the surface. If the gravitational force along the
line s is resolved into inline and perpendicular components, we find that
the perpendicular components (R sinθ) cancel and only the inline (R cosθ)
components contribute. Hence the acceleration due to a gravitational ele-
ment is:

da =
G dM

s2
cosφ.
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Figure 17.1: Field Inside a Thin Spherical Shell

Substituting for dM and integrating over the surface, we have

a = σ2πG

∫ π

θ=0

cosφ sinθ

s2
dθ.

Now we express s and φ in terms of θ.

s2 = R2 + r2 − 2R r cosθ

using the law of cosines. Differentiating,

2s ds = 2R r sinθ dθ

sinθ dθ =
s ds

R r
(17.1)

For angle φ

R2 = r2 + s2 − 2r cosφ and

cosφ =
r2 + s2 − R2

2r s
. (17.2)
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We can now make the necessary substitutions, mindful that changing the
variable of integration changes the limits.

θ

∣

∣

∣

∣

∣

π

0

: s

∣

∣

∣

∣

∣

R+r

R−r

a = −2πG σR2

∫ s=R+r

s=R−r

1

s2

r2 + s2 − R2

2 r s

s ds

R r

a = −
πG σR

r2

∫ s=R+r

s=R−r

(

1 +
r2 − R2

s2

)

ds (17.3)

Now σ =M/4πR2, so

a = −
G M

4 R r2

∫ s=R+r

s=R−r

(

1 +
r2 − R2

s2

)

ds.

Integrating,

a = −
G M

4R r2

[

s −
r2 − R2

s

]s=R+r

s=R−r

a = −
G M

4R r2

[

(R + r) − (R − r) − (r2 − R2)
(

1

R + r
−

1

R − r

)]

a = −
G M

4R r2

[

2r − (r2 − R2)

(

(R − r) − (R + r)

R2 − r2

)]

a = −
G M

4R r2
[2r + (−2r)]

a = 0. (17.4)

Hence, the acceleration due to gravity at any point inside a thin spherical
shell is identically zero!

There are other, simpler ways to find this solution. For example, Gauss’
Law immediately yields the same result.

18 Tunnel Through the Earth

Suppose a straight tunnel is cut from the surface of the earth to the opposite
side through the center.
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An object is dropped down the tunnel and, assuming that air friction is
negligible, we wish to determine the time it takes for the object to return
to its starting point.

The only force acting on the object is gravitational. From previous problems
we know that only that portion of the earth’s mass contained in the sphere
with radius equal to the object’s height above the center will contribute.

let

σ =
M

V

and

V =
4

3
πR3

where M is the mass of the earth and V is the volume. be the mass density
of the earth. Assuming uniform density at any radius from the center

σ =
Mr

Vr
.

The governing equation for an object at any distance r from the center is

mar =
G m Mr

r2

ar =
G Mr

r2

ar =
4πG σ r3

3r2

ar =
4

3
πG σ r (18.1)

The force, F is

F = mar =
4

3
πG σm r.

But this corresponds to the differential equation

d2r

dt2
− k r = 0
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whose solution is the same as that of an object subject to a spring force
without friction. That is, simple harmonic motion. The period is given by

T = 2π

√

m

k
=

2π
√

4
3
πσG

.

At the surface, the gravitional force is the weight of the object

W = mg =
G M m

R2
=

4

3
πσG m R.

Thus
g

R
=

4

3
πσG,

so

T = 2π

√

R

g
= 2π

√

6370 × 103 m

9.8 m/sec2
= 84.8 min.

19 Snell’s Law

It is believed that Snell developed his famous equation by purely empirical
means. He made numerous measurements of the refracting properties of
various materials and found a relationship which made accurate predic-
tions. Later, is was found that his result could be proven.

This proof of Snell’s law is purely geometric and only requires the initial
assumption that the index of refraction, n, is related to the speed of light in
the media by the following relation:

n =
c

v

where v is the speed of light in the medium. The geometry is illustrated in
Fig. (19.1), with two parallel rays approaching the interface at an angle, θi,
from the normal. Media m1 and m2 have indices of refraction, ni and nr,
respectively.
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Snell’s law is usually stated as,

ni sinθi = nr sinθr,

where i is an incident ray and r is a refracted ray.

b

x

m1

m2

θi

i1 i2

A

Figure 19.1: Plane Wave Incident on Interface

If the two rays shown travel together, then i2 just reaches point ‘A’ when i1

strikes the interface. i2 completes the remaining journey to the interface at
velocity c/ni and covers distance x sinθi.

Fig. (19.2) shows the incident and refracted rays with critical points la-
belled. While i2 completes its journey to the interface, i1 is refracted into
m2 travelling at the new velocity c/nr. It reaches point ‘B’ when i2 reaches
the interface. Note that the acute angle formed by the entry point of i1 and
the right triangle at ‘A’ is θi, and the corresponding acute angle formed by
the entry point of r2 and the right triangle at ‘B’ is θr.

Point ‘B’ is found by the intersection of two circles. One is the circle
centered at the entry point of i1 at the interface and with radius equal to the
distance travelled in medium m2 while i2 travels its excess distance to the
interface in m1. The second circle is centered halfway between the entry
point of i1 and i2 along the interface, and with radius equal to half that
distance x/2. This is the locus of right triangles with x as a hypotenuse.

The ratio of the two distances is the same as the ratio of the sines of angles
θi/θr. But this ratio is also the ratio of the velocities of light in the respective
media and is therefore inversely proportional to the indices of refraction.
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Figure 19.2: Refracted Wave in Medium

Therefore,
ni sinθi = nr sinθr

as was to be proved.

There are other ways to prove Snell’s law, but the visual appeal of a geo-
metric proof is that the involved quantities and their relationships can be
easily seen in the figure.

20 Mirrors and Lenses

This section contains proofs for a few important theorems in optics.

20.1 Finding the Focal Point

The focal point of a concave mirror is that point at which light rays from
a distant object are expected to converge. It is a central concept in the
characterization of both mirrors and thin lenses.
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For our derivation, we observe that it is only necessary to consider a cross-
section of the mirror which passes through the center of curvature. By
symmetry, the behavior of distant rays which strike the mirror elsewhere
will be the same.

C D

PO

Q
F

Figure 20.1: Ray Diagram

In the diagram, C is the center of the sphere which forms the contour of the

mirror. CD is a radius to the center of the arc. A ray from a distant object,

OP, parallel to CD is reflected as ray PQ intersecting CD at F.

CP is a radial line from the center of the sphere and is therefore normal to
the surface at P. The angle of incidence is equal to the angle of reflection,
so ∠OPC = ∠CPQ. Let the angle of incidence = α. Then ∠CPQ = α and
∠PCD = α. ∠PFD = 2α.

Now for the approximations. Assume the ray OP is very close to CD. In this

case the arc DP is short and very nearly a straight line perpendicular to CD.

With this approximation, tan(∠DFP) = tan(2α) ≈ DP
FD

. Also, tan(∠DCP) =

tan(α) ≈ DP
CD

.

With OP close to CD the angles α and 2α are small. Hence, tan(α) ≈ α and

tan(2α) ≈ 2α. So DP
FD
≈ 2 DP

CD
, or CD ≈ 2FD. This places point F at the

midpoint of radius CD.

We have now shown that rays from distant objects whose paths are parallel
to and sufficiently close to the radius through the center of a spherical mir-

47



ror will, after reflection, pass through a common point, F, whose distance
from the mirror is 1/2 the radius. This point is called the focal point.

In the literature, the focal point is usually identified with the symbol f , and
the equation

f =
r

2
,

where r is the radius of curvature is used.

20.2 The Mirror/Lens Equation

A central equation in optics relates the focal length, object distance and image
distance for a thin lens or mirror. This equation is usually expressed as

1

f
=

1

p
+

1

q
, (20.1)

where f is the focal length, p is the distance from the object to the lens, and
q is the distance from the lens to the image.

We can derive this equation from the following figure using simple geom-
etry.

In the figure, the center of the lens is at 0. p is the distance from the lens to
the object and q is the distance from the lens to the image. ho is the height
of the object and hi is the height of the image. f is the distance from the
lens to the focal point.

Using the similar triangles indicated by the alternate interior angles at 0,
consisting of sides p and ho for the left and q and hi for the right, we find

ho

hi
=

p

q
. (20.2)

Likewise, from the similar triangles indicated by the alternate interior
angles at f , consisting of ho along the center line of the lens and f for the
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Figure 20.2: Lens, Object and Image

left and hi and q − f for the right, we find

ho

hi

=
f

q − f
. (20.3)

Hence,

p

q
=

f

q − f
(20.4)

p · q − p · f = q · f (20.5)

p · q = f (p + q) (20.6)

f =
p · q
p + q

(20.7)

Finally,
1

f
=

p + q

p · q
=

1

p
+

1

q
. (20.8)

.
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20.3 Lensmaker’s Formula

Lenses with the same shape and index of refraction will have the same
focal length. the lensmaker’s formula relates the index of refraction, the radii
of curvature of the two surfaces of the lens, and the focal length of the lens.

A number of idealizations, simplifications and approximations are used
to complete the derivation, but the results are compact and sufficiently
accurate for most purposes.

We begin by observing that a lens with convex surfaces behaves the same
as two plano-convex lenses placed with the flat sides in contact. Fig. (20.3)
shows the division of the lens into two pieces which we will analyze
separately.

Figure 20.3: Separation of Lens into Halves

Recall that with thin lenses we can reverse the direction of the ray without
affecting the incident and refracted angles. Hence, Fig. (20.4) which repre-
sents one plano-convex lens may be regarded as the rightmost half of the
original lens or the leftmost half reversed. In this figure, a perpendicular
ray enters the flat surface of the lens. It proceeds to the curved surface
without initial refraction. When it emerges from the curved surface it is
refracted by an angle determined by Snell’s law. The radius from the cen-
ter of curvature extended through the exit point determines the surface
normal. The angle in the media between the ray and the normal is θ1. The
angle between the refracted ray and the normal is θ2.

If the index of refraction of the lens is n and we take the index of refraction
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Figure 20.4: Ray Diagram for Lens Analysis

of air as 1, Snell’s law holds that

n sinθ1 = sinθ2.

Assuming small angles (paraxial rays), we now approximate the sines of
the angles with the angles themselves so that

nθ1 ≈ θ2.

Substituting this in the angle between the refracted ray and the axis

θ2 − θ1 = nθ1 − θ1 = (n − 1)θ1. (20.9)

For these small angles, the tangents are also close to the angles themselves.
We can write

θ2 − θ1 ≈
h

f1

, (20.10)

and

θ1 ≈
h

R1
. (20.11)

Eliminating h between (20.10) and (20.11) and substituting from (20.9),

1

f1
=

n − 1

R1
. (20.12)
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Substituting from the lens equation (20.8) which relates the object and
image distances to the focal length

1

o1
+

1

i1
=

n − 1

R1
. (20.13)

An equivalent analysis of the other half of the lens gives

1

o2
+

1

i2
=

n − 1

R2
. (20.14)

We can now combine (20.13) and (20.14) noting that the image of the first
lens is a virtual object for the second lens. Therefore i1 = −o2 and, adding
the two equations,

1

o1
+

1

i2
= (n − 1)

(

1

R1
+

1

R2

)

. (20.15)

Writing the lens equation in terms of the object and image distances,

1

o
+

1

i
=

1

f
. (20.16)

But o1 and i2 are the object and image distances of the whole lens, so o1 = o
and i2 = i. Thus,

1

f
= (n − 1)

(

1

R1

+
1

R2

)

, (20.17)

which is the lensmaker’s formula.

Considering the approximations used, we should not expect this formula
to be accurate for large angles of incidence, but for many purposes it is
quite useful.

21 Solar Constant

The luminosity of the Sun, L, is 3.827×1026 Watts. When the Sun is directly
overhead on a clear day, how many watts would we expect to illuminate a
square meter of the Earth’s surface?
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This value is found by spreading the luminous flux over an imaginary
sphere with its center at the center of the Sun and its radius equal to the
Earth’s distance from the Sun, 1.496 × 1011 meters.

The sphere has a surface area equal to

A = 4πr2 = 4π(1.496 × 1011)2 (21.1)

A = 2.81 × 1023 m2. (21.2)

Then the value we seek is L/A or 1361 W/m2. This is called the Solar
Constant and is most useful in analyzing solar powered equipment and
evaluating energy conservation methods.
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22 Miscellaneous Physical Constants

The use of parentheses indicate that no standard symbol has been estab-
lished. Empty parentheses indicate no suggested symbol.

Constant Symbol Value
Speed of light in vacuum c 2.9979 × 108 m/sec
Gravitational constant G 6.673 × 10−11 nt-m2/kg2

Planck constant h 6.6262 × 10−34 joule-sec
Electron charge e 1.6021 × 10−19 coulomb
Electron rest mass (me) 9.1086 × 10−31 kg
Proton rest mass (mp) 1.6724 × 10−27 kg
Boltzmann’s constant k 1.308 × 10−23 J/K
Radius of earth (Re) 6370 km
Mass of earth (Me) 5.98 × 1024kg
Distance from Earth to Sun () 1.496 × 108 km
Diameter of Sun () 6.95 × 105 km
Mass of Sun () 1.989 × 1030 kg
Luminosity of Sun () 3.827 × 1026 W
Solar constant () 1358 W/m2

Distance from Earth to Moon () 3.844 × 105 km
Radius of Moon () 1738 km
Mass of Moon () 7.348 × 1022 kg

54


