Notes on the ‘()" Function of Williams and Comstock

by C. Bond

1 Background

Because of some poorly documented differences between the descriptions of the ‘@Q’ function in the original
Williams & Comstock paper! and the book by Neal Bertram? I decided to re-derive the equations on which
the W&C model is based. The intent was to explain and resolve those differences. On completing the
analysis, I found that Bertram describes a more general formulation of the @ function which plots a family
of curves, rather than the single plot of W&C, which assumes an optimal head field value. This difference
clearly impacts the design of head/media geometries for specific write applications, as will be shown later in
this paper.

In the following paragraphs, I follow the original modeling strategy presenting explicit details of the derivation
of the equations and the resulting relations. In addition, I present an exact closed form expression for the
W&C version of the @ function — which to my knowledge has not been previously published. Limiting
values for Q at x = 0 and x = oo are given. Further, I will show that the W&C model predicts adequate
write capability for permalloy at media coercivities approaching 3000 Oe — which raises some questions
about either the model or the conventional wisdom.

2  Summary

According to Williams & Comstock, an optimal recording transition (minimal length) will be written if the
deep gap field of the write head is adjusted so that the maximum gradient exists where the external head field
equals the coercivity of the media at the given head/media spacing. Their modeling strategy, which assumes
a Karlquist head field, requires finding the maximum field gradient for a given geometry as a function of the
‘x’ (downtrack) distance from the gap. This gradient is a function of the gap length, g, coercivity, H., and
spacing (fly height), y, only.

Q(y/g) is defined as a function of y/g and is associated with the maximum write field gradient such that

the equation:
dHh  —-QH.

. y (1)

is optimal under the stated conditions. @) is neither a function of H. nor Hy as will be shown.

3 Karlquist Head Field

The Karlquist head field is given by:
H 2 —g/2
H,=H, == (arctan (m> — arctan (u)> , (2)
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where g is the gap length, y is the head to media spacing, and Hy is the deep gap field. This equation is of
the form Hj, = Ho(61 — 62)/7, where 61 and 65 are the angles between some field point external to the head
and the two gap edges.

IWilliams & Comstock,An Analytical Model of the Write Process in Digital Magnetic Recording, 17th Annu. Conf. Proc.
Part 1, No. 5, 1971, pp. 738-742
2Bertram, H. Neal, Theory of Magnetic Recording, 1994, Cambridge University Press



Note that we are placing the vertical axis along the centerline between the inside gap edges. W&C set the
axis along the trailing edge. This only affects the algebra, not the result.

Figure 1: Karlquist Geometry
The geometry is shown in Fig. (1).

Using the trigonometric identity

4B’ )

arctan(A4) — arctan(B) = arctan(
Eq. (2) can be simplified to

H H

Hy = arctan [ —2Y ) = Z0p (4)
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where 6 is the angle subtended by the field point and the two gap edges.

W&C address the write process, which is constrained to take place at the point in the media where the head

field equals the media coercivity. They begin by solving the Karlquist equation to find the value of x for

which Hp, = H.. They require that the head field be adjusted so that the maximum gradient is there, as
common sense would suggest.

From Eq. (4) we take § = m Hy,/Hj so,

gy _ mH,
= () @

where xq is the value of x for which H, = H..

The last equation can be solved for zq yielding

o= +20/1 = 2y 2+4—y (6)
0 2 g gtan (mH./Hy)’

where the two solutions correspond to the two points in the media where the conditions are satisfied. We
will use the positive solution in the following analysis.

4 The Gradient

The Karlquist equation is a function of several variables, and we must be mindful when taking derivatives.
Some of the ‘fixed’ variables may be subject to later changes.?

31t is a fairly common practice to treat partial differential quantities as total differentials. Of course, this will work if all
other variables are assigned constant values for a given experiment, but the practice is questionable and can lead to errors. (A
mathematician and a physicist came upon a house on fire...)



For the purposes at hand, the spacial gradient of the head field is

dH,  Hydf
_— 7
dx m dx (™
Differentiating 6
dHy _ ﬂ 1 —2zyg (8)
de | yg 2 @2 +y? = (9/2)2)%
(IQ +y? - (9/2)2)
which simplifies to
dHp, _ —2x Hyyg )
do (2 +y% = (9/2%)* + (y9)*)’
or even better, using the identity
tan?(w) .
- 10
1+ tan?(w) sin*(w), (10)
we find JH o0
Th _ TETT0 Gn2(p). (11)
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5 Maximizing the Gradient

To find the value of x which corresponds to the maximum gradient, set the equation for the derivative of the
gradient to zero and solve for . The resulting equation will not be a function of Hy because Hy appears in
the starting Karlquist equation as a (constant) multiplier only, and all multipliers appear in the derivatives
as multipliers. Hence, setting the second derivative of the Karlquist equation to zero effectively removes Hy
(and 7) from the result.

We find that the value of x for maximum gradient is given by

\/92 — 4y? 4+ 2/g* + 4g%y% + 16y*
= 275 7

Tm

(12)
and is a function of y and g only.

We can solve Eq. (6) for Hy by substituting the value for z,, from Eq. (12) for zo. In doing this, we satisfy
the condition that the maximum gradient occurs at the point of the transition in the media. The resulting

value for Hy is

H.w
Hopt =

(13)
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4y? — g% + /g* + 4g2y? + 16y*

We can now find an expression for the maximum gradient in terms of H., g and y by substituting x,, for x
and H,p for Hy in Eq. (8). Thus

d Hp, B 6v3 g Heyr/ g2 — 4y + 2p 14)
dzr -

6 b
max  (p(g2 — 492) — g* — 16g2%y? — 16y*) arctan (pi— gzgi 4y2)

where p = /g% + 492y + 16y = ¢>\/1 +4y?/¢? + 16y /4"

Note that the role of th @ function in the W&C paper is to facilitate the calculation of the maximum
field gradient under specified conditions. From Eq. (14) we have derived and expression for the maximum
gradient already, and the need for an auxiliary function (the @ function) is less compelling. Nevertheless, to
complete the analysis, we now derive a formula for Q.



6 The Williams & Comstock () Function

The @ function is obtained by factoring out that part of the expression for the maximum gradient which is
a function of y/g. Referring to Eq. (8) we have

y dHy

_HC dx (15)

Q=

max

The expression obtained by expanding the right side of Eq. (15) directly can be rearranged to show more
explicity the dependence of y/g giving

0= —6v3(y/9)*\/1 +2m — 4(y/9)? ) | (16)

(1 —4(y/g)*)m — 1 —16(y/g)* + 16(y/g)*) arctan (m

where m = /1 + 4(y/g)? + 16(y/g)*.

The closed form expression for @) in Eq. (16) shows that it is, as described in the original paper, a functions
of y/g (only). Further, a plot @ is given below over the same range is that in the W&C paper, confirming
that this is the same function they described. It can be shown that @ has a limiting value of 2/7 at y/g =0
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Figure 2: Williams-Comstock ¢ Function vs. y/g

and 1/3(v/15 —2)/2/2 as y/g — oo. There are no finite maxima. Hence 0.6366 < @ < 0.8381 for all positive

y and g. It is very easy to devise simple approximations which are more convenient for casual use.

Using the expression already found for xo, we can also express xo/g as a function of y/g only. In fact,

- \/1 —4(y/9)? +2/1+4(y/9)% + 16(y/9)*
g 2/3 an




A plot of 29 and @ is shown in Fig. (3).4
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Figure 3: @ Function and zo/g vs. y/g

7 Bertram’s () Function

To reduce potential confusion, I will refer to the Bertram version of the @ function as @ p. It will be shown
that this is a different formulation yielding different results from those of W&C.

The @ function previously derived is single valued for every y,g and assumes that the point of maximum
head field gradient has set into the media. Bertram, on the other hand, decouples the ) which appears in
Eq. (1) and treats it as a general function of y, g, Hy and H.. In his treatment, ) is not constrained to a
fixed relation between Hy and H..

The starting point for understanding the different results provided by the two approaches is

dH, H.
h _ _QHe e (18)
dr |max Y
dH H.
o= - @5 Bertram. (19)
dx y
The explicit form given by Bertram for @ is
220 H,
Qp = 0 Gin2(nH,/ Hy), (20)
wgH,

which is a function of y, g, H. and Hy, rather than a function of y and g only. The reason for uncoupling H.
and Hj is that the gradient in the media may be increased by increasing the field. This moves the maximum
head field gradient out of the media, but may increase the gradient in the media nevertheless.

Because Bertram redifines ), he must adopt a different optimization strategy. Instead of tracking the point
of maximum head field gradient and adjusting the field until this point is in the media, he adjusts the head
field for maximum gradient in the media. Note that once the peak head field exceeds H. further increases
of Hy will move the switching point. H, = H. further from the gap.

Plots for @ p with various y/g ratios are shown in Fig. (4).

4This is one instance where the different coordinate system of Williams & Comstock w.r.t. the location of the z-axis origin
makes a difference. In my plot, I had to lower the plot of zg by g/2 in order to match the plot given in the W&C paper.
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Figure 4: Bertram’s () Function

As previously stated, this strategy yields different results from those of W&C. The following table shows a
comparison of the results for a specific geometry. Note that the field value, Hy, for Bertram is above the
comfort level for permalloy, but that the W&C result is comfortable. Bertram’s strategy for maximizing the
gradient extracts a penalty — improving the gradient by 18% over the W&C value requires an increase in
the field by 51%! Any application of Bertram’s model clearly requires careful analysis.

[Model | g | v | Ho | = [Q(@QgB)| Ho | Hy/H. | dHy/dx ]
W&C 0.2 | 0.05 | 2400 | 0.101 0.717 5742 2.4 -34416.5
Bertram | 0.2 | 0.05 | 2400 | 0.126 0.848 8660 3.6 -46689.2

8 Conclusion

Bertram describes a different method for optimizing the head field gradient from that of W&C. The intent
in both cases is to minimize the transition length or a parameter. But the differences are not trivial and
would lead to different design decisions concerning optimized head/media combinations.

The W&C strategy involves finding the minimum field required to support a particular gradient in the media,
although this is not directly stated in their paper. Once a gradient has been calculated by their method, no
lower field can produce the same gradient.

Bertram’s method, on the other hand, involves finding the maximum possible gradient for Hy, = H,., with
no constraint on the field required to obtain it.

Because of the larger fields required to satisfy Bertram’s method, there may be a significant exposure to
non-linear effects in the media. NLTS and partial erase problems could be exacerbated at high densities,
and there may be a need for higher By, materials.

These observations, results and conclusions are solely for the purpose of comparing to two optimization
strategies. No three dimensional or high frequency effects have been considered.



