
An Efficient Digit-by-Digit Decimal Square Root Algorithm
Using Non-restoring Pseudo-Division

by C. Bond, c©2003

http://www.crbond.com

Abstract

A square root algorithm optimized for hand held calculators has
been previously disclosed in an article by Egbert [1]. The algorithm is
similar to other digit-by-digit decimal algorithms published elsewhere,
but with a number of improvements to better adapt the method to a class
of BCD calculators. In this paper, a further improvement is disclosed
which brings the advantages of non-restoring division, also described
in the literature, to the pseudo-division process used in taking square
roots.

1 BCD Square Root Algorithm

The basic algorithm we will use is completely described in the article
by Egbert and the reader is advised to consult the original paper for a
detailed explanation.

Egbert shows that the method for computing square roots closely
follows the pencil and paper methods taught in school, but includes
modifications to reduce the number of extraneous computations. He
also shows how to exploit certain properties of the electronic storage
medium. For example, a decimal digit can be easily multiplied by ten
by simply shifting it to the adjacent position.

1.1 Pseudo-division

The central computation in the algorithm involves calculating each re-
sult digit successively, from highest to lowest. The method used for
each digit is the same, and requires subtracting an iteratively mod-
ified quantity from a suitable starting value until underflow occurs.1

This process resembles division, except for the repeated updates to the
subtractor, and is referred to as pseudo-division in the literature.

When underflow occurs, according to Egbert, the last subtractor
is added back in, thus restoring the least positive value of the result
for the next operation. Note that when this strategy is applied to

1Egbert refers to underflow as overdraft in the article.

1



ordinary division, it is called restoring division. Hence, in the square
root algorithm we call it restoring pseudo-division.

Observe that the goal in these repeated subtractions is to reduce
the starting quantity to zero, or as near as possible to zero, from the
positive side of the number line. This is analogous to the asymptotic
convergence of a continuous function toward zero from one side, but
differs in the repeated removal of fixed quantities which are taken from
a set of progressively smaller values.

1.2 Non-restoring Pseudo-division

Non-restoring methods converge to zero from both sides alternately.
Subtraction is iterated until underflow occurs, after which addition
of new, smaller values is repeated until overflow occurs. The process
successively reduces the magnitude of the starting value to zero from
one side and then from the other.

Although non-restoring processes are more complex, since they
must control the algorithm progress from two directions instead of
one, they do reduce the total number of calculations by elimination
the restoring operation.

2 The Improved Algorithm

The method used by HP in its calculators, as described by Egbert,
is explained by an example in the previously cited article. At some
point in the algorithm, Egbert shows several consecutive steps in the
recovery of one digit, as follows,

10a× 10j + 05 × 102j

10a× 10j + 15 × 102j

10a× 10j + 25 × 102j

where the a value is the current root estimate.
Note that the above expressions are the iteratively modified sub-

tractors which, at some point, will reduce the quantity from which they
are subtracted to zero or below it.

In the HP algorithm, underflow is followed by a restore operation.
In ours we present the appropriate modification to eliminate the restore
by providing an add up iteration to complement the subtract down
algorithm described by Egbert.

Rather than restoring the previously subtracted value and setting
up a new subtractor, we simply set up a new quantity to be used as an
additive value. Specifically, the subtraction loops begin by appending

2



a value of 05 to the current root estimate and increment this digit pair
so that it becomes 15, 25, etc. on successive iterations. For reasons
which will not be explained here, the subtraction will always terminate
at or before the digit pair equals 95.

2.1 The Addition Loop

For the addition loop, we append the value 95 to the current root
estimate and decrement this digit pair so that it becomes 85, 75, etc. on
successive iterations. The control value which previously underflowed
will go positive again before or when the digit pair equals 05. As in
the case of the subtraction loop, the iteration will always terminate.2

An advantage of this strategy is that the continually improving root
estimate does not require any separate count controls to identify the
currently found digit. It is automatically placed properly in the result.

3 Conclusion

The author has implemented the method of non-restoring pseudo-
division for extracting square roots on a number of platforms, including
those using different processors and in extended precision BCD math.
It is easy to implement and has proven to be reliable, efficient and
stable. It is currently used in the author’s XBCD extended precision
BCD math package.

References

[1] William E. Egbert, “Personal Calculator Algorithms I: Square
Roots,” Hewlett-Packard Journal, vol. 28, no. 9, May 1977.

2The value of the result when underflow occurs is not a signed BCD quantity, but can
be handled identically in the restoring and non-restoring algorithms.

3


